Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 342: 454-463, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28881272

ABSTRACT

Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O2 and CO2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days.


Subject(s)
Bioreactors , Iron/chemistry , Metals, Heavy/chemistry , Sulfides/chemistry , Sulfur/chemistry , Hydrogen-Ion Concentration , Incineration
2.
J Hazard Mater ; 325: 59-70, 2017 Mar 05.
Article in English | MEDLINE | ID: mdl-27915100

ABSTRACT

Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe2O3) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe2+. The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample.


Subject(s)
Environmental Pollutants/analysis , Ferric Compounds/chemistry , Hazardous Waste/analysis , Iron/chemistry , Oxygen/chemistry , Sulfides/chemistry , Sulfur/chemistry , Arsenic/chemistry , Biodegradation, Environmental , Bioreactors , Coal Ash/analysis , Cobalt/chemistry , Copper/chemistry , Environment , Hydrogen-Ion Concentration , Industrial Waste/analysis , Sulfuric Acids/chemistry , Waste Products/analysis , X-Ray Diffraction , Zinc/chemistry
3.
Waste Manag Res ; 34(6): 527-33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26987736

ABSTRACT

The pyrite ashes formed as waste material during the calcination of concentrated pyrite ore used for producing sulphuric acid not only has a high iron content but also contains economically valuable metals. These wastes, which are currently landfilled or dumped into the sea, cause serious land and environmental pollution problems owing to the release of acids and toxic substances. In this study, physical (sulphation roasting) and hydrometallurgical methods were evaluated for their efficacy to recover non-iron metals with a high content in the pyrite ashes and to prevent pollution thereby. The preliminary enrichment tests performed via sulphation roasting were conducted at different roasting temperatures and with different acid amounts. The leaching tests investigated the impact of the variables, including different solvents, acid concentrations and leach temperatures on the copper and cobalt leaching efficiency. The experimental studies indicated that the pre-enrichment via sulphation roasting method has an effect on the leaching efficiencies of copper and cobalt, and that approximate recoveries of 80% copper and 70% cobalt were achieved in the H2O2-added H2SO4 leaching tests.


Subject(s)
Chemical Industry/methods , Cobalt/isolation & purification , Copper/isolation & purification , Industrial Waste , Sulfuric Acids/chemical synthesis , Waste Management/methods , Industrial Waste/analysis , Iron/chemistry , Metallurgy/methods , Solvents/chemistry , Sulfides/chemistry , Temperature , Turkey
4.
Waste Manag ; 49: 455-461, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26711187

ABSTRACT

Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1 M citric acid, 0.1 M hydrogen peroxide, 50°C and 120 min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching.


Subject(s)
Citric Acid/chemistry , Oxalic Acid/chemistry , Recycling/methods , Sulfuric Acids/chemistry , Vanadium/analysis , Waste Management/methods , Industrial Waste/analysis , Waste Management/instrumentation
5.
Waste Manag ; 45: 258-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25704926

ABSTRACT

Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals.


Subject(s)
Cyanides/chemistry , Electronic Waste/analysis , Metals, Heavy/chemistry , Recycling/methods , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...