Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 199: 114278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583787

ABSTRACT

The transfer from batch-based to continuous tablet manufacturing increases the quality and efficiency of processes. Nonetheless, as in the development of a batch process, the continuous process design requires optimization studies to ensure a robust process. In this study, processing of a commercially batch-manufactured tablet product was tested with two continuous direct compression lines while keeping the original formulation composition and tablet quality requirements. Tableting runs were conducted with different values of process parameters. Changes in parameter settings were found to cause differences in tablet properties. Most of these quality properties could be controlled and maintained within the set limits effortlessly already at this stage of studies. However, the API content and content uniformity seemed to require more investigation. The observed content uniformity challenges were traced to individual tablets with a high amount of API. This was suspected to be caused by API micro-agglomerates since tablet weight variability did not explain the issue. This could be solved by adding a mill between two blenders in the process line. Overall, this case study produced promising results with both tested manufacturing lines since many tablet properties complied with the test result limits without optimization of process parameter settings.


Subject(s)
Chemistry, Pharmaceutical , Drug Compounding , Excipients , Tablets , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Technology, Pharmaceutical/methods
2.
Int J Pharm ; 647: 123509, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37832703

ABSTRACT

As is the case with batch-based tableting processes, continuous tablet manufacturing can be conducted by direct compression or with a granulation step such as dry or wet granulation included in the production procedure. In this work, continuous manufacturing tests were performed with a commercial tablet formulation, while maintaining its original material composition. Challenges were encountered with the feeding performance of the API during initial tests which required designing different powder pre-blend compositions. After the pre-blend optimization phase, granules were prepared with a roller compactor. Tableting was conducted with the granules and an additional brief continuous direct compression run was completed with some ungranulated mixture. The tablets were assessed with off-line tests, applying the quality requirements demanded for the batch-manufactured product. Chemical maps were obtained by Raman mapping and elemental maps by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Large variations in both tablet weights and breaking forces were observed in all tested samples, resulting in significant quality complications. It was suspected that the API tended to adhere to the process equipment, accounting for the low API content in the powder mixture and tablets. These results suggest that this API or the tablet composition was unsuitable for manufacturing in a continuous line; further testing could be continued with different materials and changes in the process.


Subject(s)
Technology, Pharmaceutical , Atorvastatin , Powders/chemistry , Tablets/chemistry , Pressure , Drug Compounding/methods , Technology, Pharmaceutical/methods , Particle Size
3.
Int J Pharm ; 639: 122969, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37084833

ABSTRACT

In this study, an integrated flowsheet model of the continuous feeder-mixer system was calibrated, simulated and compared against experimental data. The feeding process was first investigated using two major components (ibuprofen and microcrystalline cellulose (MCC)), in a formulation comprised of: 30 wt% of ibuprofen, 67.5 wt% MCC, 2 wt% of sodium starch glycolate and 0.5 wt% of magnesium stearate. The impact of a refill on feeder performance was experimentally evaluated for different operating conditions. Results showed that it had no influence on feeder performance. While simulations with the feeder model fairly reproduced the material behaviour observed in the feeder, unintended disturbances were underpredicted due to the model's low complexity. Experimentally, mixer's efficiency was assessed based on ibuprofen residence time distribution. Mean residence time pointed to a higher mixer's efficiency at lower flow rates. Blend homogeneity results showed that for the entire set of experiments, ibuprofen RSD < 5%, irrespective of process variables. A feeder-mixer flowsheet model was calibrated, after regressing the axial model coefficients. The regression curves exhibited a R2 above 0.96, whereas the RMSE varied from 1.58x10-4 to 1.06x10-3 s-1 across all fitted curves. Simulations confirmed that flowsheet model captured the powder dynamics inside the mixer and qualitatively predicted the mixer's filtering ability against feeding composition fluctuations, as well as ibuprofen RSD in blend, in line with real experiments.


Subject(s)
Ibuprofen , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Powders/chemistry
4.
Int J Pharm ; 628: 122355, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36341918

ABSTRACT

Continuous tablet manufacturing is a competitive option to replace the traditional batch manufacturing approach. The aim of this study was to evaluate technology transfer from batch-based direct compression of a commercial tablet formulation to continuous direct compression without changes to the composition of the formulation. Some powder studies were conducted with the raw materials and multi-tip punches were utilized in the tableting studies. To lower the high level of tablet weight variability that was evident during preliminary tests, a process parameter optimization was performed using an experimental design with different rpm values of force feeder and mixer impeller. By selecting the most appropriate settings of these parameters for the studied product, the weights of the tablets could be controlled adequately to meet the specification criteria. The functionality of the best-performing parameter settings was investigated with a three-hour-long tableting run. The tablets were evaluated with the same quality criteria as the commercial batch-produced tablets, and they passed all the tests performed in this study. Despite the challenging material properties according to the flowability tests, production of tablets with the desired quality was achieved using the original composition with continuous direct compression.


Subject(s)
Bisoprolol , Technology, Pharmaceutical , Tablets , Powders , Pressure , Drug Compounding
5.
Eur J Pharm Biopharm ; 180: 161-169, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122786

ABSTRACT

Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 M ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Calorimetry, Differential Scanning , Solubility , Transition Temperature , Drug Stability
6.
Eur J Pharm Sci ; 158: 105619, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33115676

ABSTRACT

Hot-melt extruded (HME) filaments are an essential intermediate product for the three- dimensional (3D) printing of drug delivery systems (DDSs) by the fused deposition modelling (FDM) process. The aim of this study was to design novel polymeric 3D-printable HME filaments loaded with active pharmaceutical ingredients (APIs). The physical solid-state properties, mechanical properties, drug release and short-term storage stability of the filaments and 3D-printed DDSs were studied. Physical powder mixtures of polycaprolactone (PCL), plasticizer and API were manually blended, extruded by a single-screw extruder, and printed by a table-top FDM 3D-printing system. The composition of PCL and arabic gum (ARA) enabled the incorporation of 20%, 30% and 40% (w/w) of indomethacin (IND) and theophylline (THEO) into the HME filaments. The uneven distribution of API throughout the filaments impaired 3D printing. The HME filaments loaded with 20% IND or THEO were selected for the further analysis and printing tests (the ratio of PCL, ARA and IND or THEO was 7:1:2, respectively). The IND filaments were yellowish, mechanically strong and flexible, and they had a uniform filament diameter and smooth outer surface. The filaments containing THEO were smooth and off-white. The 3D-printed tablets fabricated from IND or THEO-loaded filaments showed sustained drug release in vitro. The drug release rate, however, significantly increased by changing the geometry of 3D-printed tablets from a conventional tablet structure to an unorthodox lattice ("honeycomb") structure. Overall, the combination of PCL and ARA provides an interesting novel polymeric carrier system for 3D-printable HME filaments and tablets.


Subject(s)
Polyesters , Printing, Three-Dimensional , Drug Liberation , Tablets , Technology, Pharmaceutical
7.
Eur J Pharm Biopharm ; 155: 49-54, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32795500

ABSTRACT

Many new active pharmaceutical ingredients (API) undergoing development have low permeabilities or low aqueous solubilities. However, the amorphous state is usually more soluble than its crystalline counterpart. The amorphous state has a higher Gibb's free energy, which can improve the apparent solubility but decrease the stability since the amorphous state tends to transform to the more stable crystalline form. Before recrystallization, a co-amorphous binary mixture's ingredients have to undergo a phase separation. The aim of this study was to obtain a better understanding of the amorphous-amorphous phase separation in co-amorphous binary mixtures and test the suitability of imaging Raman spectroscopy for detecting this phenomenon. To study the phase separation, we prepared three different 50:50 mass ratio binary mixtures of APIs: paracetamol-terfenadine, (PAR-TRF), paracetamol-indomethacin (PAR-IMC) and terfenadine-indomethacin (TRF-IMC). The binary mixtures were amorphized with melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermal degradation was determined with a high performance liquid chromatography (HPLC) method to ensure that melt-quenching did not cause any thermal degradation of the molecules. Thermodynamic attributes (crystallization tendency, melting point (Tm) and Tg) were measured with differential scanning calorimetry (DSC) to ensure that the co-amorphous systems transformed to the amorphous state and remained amorphous after cooling and reheating. Phase separation was studied from the surface and cross-section (CS) with Raman imaging to examine if it occurred more on the surface than in the bulk. The Raman spectra were analyzed with principal component analysis (PCA) and Contour plots were produced from the PCA-score values to visualize concentration differences in the mixtures. The results showed that API vs API concentrations increased as a function of time in both surface and CS images before crystallization. This suggests that Raman imaging is a suitable technique to detect the phase separation phenomena in small molecule co-amorphous binary mixtures.


Subject(s)
Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Spectrum Analysis, Raman/methods
8.
Eur J Pharm Sci ; 151: 105381, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32464174

ABSTRACT

When one wishes to convert a batch based manufacturing process of an existing tablet product to a continuous process, there are several available strategies which can be adopted. Theoretically, the most straightforward way would be to proceed with the corresponding processing principles, for example to change a wet granulation (WG) batch process into its continuous WG counterpart. However, in some cases, the choice of roller compaction (RC) could be very attractive due to the notably simpler and inherently continuous nature of the RC manufacturing principle. The aim of this study was to examine a process conversion from batch based high-shear wet granulation (HSWG) to continuous RC manufacturing, without any significant formulation changes. An optimization of the formulation is often needed during the process conversion. However, our primary goal was to demonstrate the possibilities to perform this kind of process adaptation with minimal formulation changes. Furthermore, the effect of three different locations of lubrication feeding with two production rate levels was studied. An additional target was to identify possible over-lubrication with these manufacturing configurations, and to clarify which of these three possibilities steps produced a final product that conformed to the same quality requirements as HSWG tablets. Previously, the effects of lubrication only on compacted ribbons (Miguelez-Moran A.M, 2008) and final product with CDC (continuous direct compression) (Taipale-Kovalainen, et al., 2017; 2019) have been investigated. Here, the effect of lubrication on both ribbon and on final product was examined. No signs of over-lubrication were observed, but there was a clear effect of the feeding location of lubricant on the final product. On the basis of these results, it is concluded that in the future, if a good product/process understanding of the alternative manufacturing process with different techniques can be obtained, it will be possible to devise more flexible and effective ways to allow the pharmaceutical industry to switch from batch manufacturing towards CM.


Subject(s)
Ketoprofen , Drug Compounding , Excipients , Lubricants , Lubrication , Particle Size , Tablets , Technology, Pharmaceutical
9.
Pharmaceutics ; 12(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244950

ABSTRACT

Segregation is a common problem in batch-based direct compression (BDC) processes, especially with low-dose tablet products, as is the preparation of a homogenous mixture. The scope of the current work was to explore if a continuous direct compression (CDC) process could serve as a solution for these challenges. Furthermore, the principle of a platform formulation was demonstrated for low dose tablets. The combination of filler excipients and the API in the formulation used was suitable for direct compression, but also prone to induce segregation in BDC process. The CDC process was found to be very promising; it was shown that tablets with the desired quality parameters could be manufactured successfully with both of the APIs studied. Powder analysis indicated that the APIs display some fundamental differences in their physical properties, which was also reflected in powder mixture properties and, hence, eventually in processing. However, process parameters, especially mixer impeller speed, were not found to have any significant influence on end product quality. The study suggests that a CDC process can be a viable solution to resolve the challenges described. Moreover, manufacturing by using a universal platform formulation seems to be a feasible way for producing low-dose tablets.

10.
Eur J Pharm Sci ; 109: 514-524, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28899763

ABSTRACT

Continuous manufacturing of solid oral dosage forms is promising for increasing the efficiency and quality of pharmaceutical production and products. In this study a whole train continuous direct compression (CDC) line has been provoked using challenging formulations typically prone to segregation in batch powder processing. Industrial compositions including components with variable size, bulk density and cohesive nature were selected. An experimental design, including variables such as API/mannitol particle size, API amount, powder feed rate and mixer speed, enabled the output quality of the provoked process to be assessed. Contrary to previous studies, a broader range of finished tablet quality attributes were probed, including content, uniformity of content, tensile strength as well as release performance. Overall, the continuous direct compression line was found to be a capable and efficient manufacturing process for the challenging compositions studied and surprisingly tolerable to handle the materials susceptible to segregation in typical batch settings. As expected, and given the 'fixed' apparatus configuration used in this study, the particulate material properties were found to have the most significant impact on the finished tablet quality attributes. The results emphasize the importance for taking a holistic approach when developing the operational windows and the strategy for control, e.g. by integrating the appropriate material properties, the actual apparatus design, and the relevant formulation design. The CDC line's ability to handle cohesive materials also seem to be one of the key advantages, thus confirming the recent promising results from other continuous direct compression studies.


Subject(s)
Drug Compounding/methods , Acetaminophen/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Fumarates/chemistry , Mannitol/chemistry , Particle Size , Powders , Pressure , Stearates/chemistry , Tablets , Tensile Strength
11.
Int J Pharm ; 511(1): 659-668, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27469074

ABSTRACT

In the present work the viability of integrated continuous mixing and compression processes for manufacturing of extended release (ER) matrix tablets was investigated in terms of dissolution behavior. The purpose was also to evaluate the combined effect of processing variables and compositional variables on the release robustness. The continuous process was provoked by a challenging formulation design, including variable powder characteristics and compositions of high and low amount of poorly soluble and poorly flowing drug substance (ibuprofen). Additionally a relatively low amount of two different ER matrix former grades (standard granulation grade CR and direct compression grade DC2 of hydroxypropyl methylcellulose, HPMC) was used to challenge the system. Robust ibuprofen release was obtained faster when HPMC CR was used. However, robust release was also achieved when using HPMC DC2 at high ibuprofen content, even though it took slightly longer time to reach the steady state of the process. Due to its poor flow properties, HPMC CR would be very challenging to use in traditional direct compression. The results showed that by using continuous processing it is possible to manufacture and achieve robust performance of compositions that would not be possible with traditional batch processing due to for instance poorly flowability.


Subject(s)
Chemistry, Pharmaceutical/methods , Compressive Strength , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Particle Size , Tablets
12.
Eur J Pharm Biopharm ; 105: 122-33, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27288937

ABSTRACT

In this study, terahertz time-domain spectroscopic (THz-TDS) technique has been used to ascertain the change in the optical properties, as a function of changing porosity and mass fraction of active pharmaceutical ingredient (API), of training sets of pharmaceutical tablets. Four training sets of pharmaceutical tablets were compressed with microcrystalline cellulose (MCC) excipient and indomethacin API by varying either the porosity, height, and API mass fraction or all three tablet parameters. It was observed, as far as we know, for the first time, that the THz time-domain and frequency-domain effective refractive index, as well as, the frequency-domain effective absorption coefficient both show linear correlations with the porosity and API mass fraction for training sets of real pharmaceutical tablets. We suggest that, the observed linear correlations can be useful in basic research and quality inspection of pharmaceutical tablets. Additionally, we propose a novel optical strain parameter, based on THz measurement, which yields information on the conventional strain parameter of a tablet as well as on the change of fill fraction of solid material during compression of porous pharmaceutical tablets. We suggest that the THz measurement and proposed method of data analysis, in addition to providing an efficient tool for basic research of porous media, can serve as one of the novel quality by design (QbD) implementation techniques to predict critical quality attributes (CQA) such as porosity, API mass fraction and strain of flat-faced pharmaceutical tablets before production.


Subject(s)
Chemistry, Pharmaceutical , Porosity , Tablets
13.
Int J Pharm ; 509(1-2): 439-443, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27289013

ABSTRACT

Biconvex pharmaceutical microcrystalline cellulose (MCC) compacts were investigated by the detection of terahertz (THz) pulse delay in the transmission measurement mode. The dimensions of the tablets were kept as constants but the porosity was a priori known variable. It is shown that the porosity of the biconvex compact has a linear correlation with the THz pulse delay. By constructing a calibration line between these two parameters (i.e. porosity and THz pulse delay), it is possible to non-invasively detect porosity of biconvex tablets. We suggest that this preliminary study could be the starting point of in-depth future studies on the screening of porosity and related properties of real biconvex pharmaceutical tablets using terahertz sensing techniques.


Subject(s)
Tablets/chemistry , Technology, Pharmaceutical/methods , Terahertz Spectroscopy/methods , Cellulose/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Porosity , Pulse
14.
Int J Pharm ; 506(1-2): 87-92, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27094355

ABSTRACT

A structure parameter that can be used to predict the pattern of arrangement of porous inclusions in pharmaceutical tablets is introduced. By utilizing the effective refractive index of a pharmaceutical tablet obtained from terahertz time-domain measurements, we have shown that there exists a promising correlation between the calculated structural parameter and the porosity of training sets of pharmaceutical tablets, having well-defined characterization. Knowing of the structural arrangement, i.e. combined constituent skeletal-pore elements in series, parallel or mixed within porous media, could serve as a basis for understanding the ingress and permeation of liquids in such media. In the realm of pharmaceutical applications, such knowledge of the structural arrangement of air voids within a medicinal tablet could enable correlation with mechanical strength and dissolution behaviour in aqueous systems.


Subject(s)
Tablets/chemistry , Permeability , Porosity , Solubility , Stress, Mechanical , Surface Properties , Technology, Pharmaceutical/methods , Terahertz Spectroscopy/methods
15.
Eur J Pharm Sci ; 90: 38-46, 2016 Jul 30.
Article in English | MEDLINE | ID: mdl-26879237

ABSTRACT

Drug manufacturing technology is in the midst of modernization and continuous manufacturing of drug products is especially the focus of great interest. The adoption of new manufacturing approaches requires extensive cooperation between industry, regulatory bodies, academics and equipment manufacturers. In this paper we introduce PROMIS-line which is a continuous tableting line built at the University of Eastern Finland, School of Pharmacy, PROMIS-centre. PROMIS-line is modular and tablets can be produced via dry granulation or direct compression. In three case studies, continuous feeding, blending and tablet performance is studied to illustrate some basic features of PROMIS-line. In conclusion, the PROMIS-line is an excellent tool for studying the fundamentals of continuous manufacturing of tablets.


Subject(s)
Drug Industry/instrumentation , Drug Industry/methods , Tablets/chemistry , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Drug Compounding/instrumentation , Drug Compounding/methods , Powders/chemistry
16.
Int J Pharm ; 495(1): 290-301, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26320548

ABSTRACT

The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems.


Subject(s)
Delayed-Action Preparations/chemistry , Drug Industry/methods , Hypromellose Derivatives/chemistry , Ibuprofen/chemistry , Technology, Pharmaceutical/methods , Drug Liberation , Particle Size , Powders/chemistry , Solubility , Tablets/chemistry , Tensile Strength
17.
Int J Pharm ; 486(1-2): 121-30, 2015.
Article in English | MEDLINE | ID: mdl-25800677

ABSTRACT

Pharmaceutically relevant properties, such as solubility and dissolution rate, of active pharmaceutical ingredients can be enhanced by cocrystal formation. Theophylline and nicotinamide are known to form cocrystals, for example if subjected to solid-state grinding. However, under appropriate conditions, cocrystals can also form in physical mixtures without any mechanical activation. The purpose of this work was to study whether theophylline and nicotinamide could form cocrystals spontaneously, without mechanical activation. Crystalline theophylline and nicotinamide powders were gently mixed manually in a 1:1 molar ratio and stored at different relative humidity and temperature conditions. The solid state of the samples was analyzed by differential scanning calorimetry, Raman spectroscopy and X-ray powder diffractometry. Three different variations of theophylline were used as starting materials, e.g., two size fractions of theophylline anhydrate (large 710 µm-1 mm and small 180-355 µm), and monohydrate (recrystallized from water). As a reference, anhydrous theophylline-nicotinamide cocrystals were prepared by solid-state grinding. The results of this study indicate that theophylline-nicotinamide cocrystals can form without any mechanical activation from physical mixtures of theophylline and nicotinamide during storage. For anhydrous samples, storage humidity was found to be a critical parameter for cocrystal formation. Increasing temperature was also found to have an accelerating effect on the transformation. The effect of particle size of anhydrous theophylline on the transformation rate could not be completely resolved; DSC and Raman indicated slightly faster transformation with a physical mixture prepared from large size fraction of anhydrous theophylline, but the differences were only minor. Cocrystal formation was also observed in the physical mixture prepared from theophylline monohydrate, but the rate was not as high as with samples prepared from anhydrous material.


Subject(s)
Niacinamide/chemistry , Theophylline/chemistry , Calorimetry, Differential Scanning , Crystallization , Drug Storage , Humidity , Powder Diffraction , Spectrum Analysis, Raman , Temperature , X-Ray Diffraction
18.
Int J Pharm ; 476(1-2): 16-22, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25245546

ABSTRACT

By measuring the time delay of a terahertz pulse traversing a tablet, and hence its effective refractive index, it is possible to non-invasively and non-destructively detect the weight of tablets made of microcrystalline cellulose (MCC). Two sets of MCC tablets were used in the study: Set A (training set) consisted of 13 tablets with nominally constant height but varying porosities, whereas Set B (test set) comprised of 21 tablets with nominally constant porosity but different heights. A linear correlation between the estimated absolute weight based on the terahertz measurement and the measured weight of both sets of MCC tablets was found. In addition, it was possible to estimate the height of the tablets by utilizing the estimated absolute weight and calculating the relative change of height of each tablet with respect to an ideal tablet. A good agreement between the experimental and the calculated results was found highlighting the potential of this technique for in-line sensing of the weight, porosity and the relative change in height of the tablets compared to a reference/ideal tablet. In this context, we propose a quantitative quality control method to assess the deviations in porosity of tablets immediately after compaction.


Subject(s)
Cellulose/chemistry , Excipients/chemistry , Technology, Pharmaceutical/methods , Terahertz Spectroscopy/methods , Chemistry, Pharmaceutical/methods , Porosity , Quality Control , Refractometry , Surface Properties , Tablets , Terahertz Radiation
19.
Int J Pharm ; 465(1-2): 70-6, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24530384

ABSTRACT

We report on the non-destructive quantification of the porosity of pharmaceutical compacts (microcrystalline cellulose tablets) by using both optical and terahertz techniques. For the full analysis of the porosity of pharmaceutical tablets, the results obtained in both cases have shown that optical and terahertz techniques are complementary. The intrinsic refractive index of microcrystalline cellulose was estimated using the effective refractive index obtained from the time delay of the THz pulse together with the Bruggeman model for effective media. Once this intrinsic refractive index is known, the unknown porosity of the tablet can be estimated with the aid of the measured effective refractive index as well as the thickness of the pharmaceutical tablet. The method was tested using a set of thirteen tablets having different porosities. It is shown that the error in the estimation of the unknown tablet's porosity is less than 1%. In addition, surface roughness was measured by using an optical interferometer and gloss by using a diffractive-optical-element based glossmeter. The measurement was achieved by scanning the tablets with a probe beam and detecting the reflected light. The surface roughness and gloss data show relatively good correlation with the porosities of the tablets.


Subject(s)
Cellulose/chemistry , Technology, Pharmaceutical/methods , Terahertz Radiation , Terahertz Spectroscopy , Porosity , Surface Properties , Tablets
20.
Int J Pharm ; 456(2): 528-35, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-23994759

ABSTRACT

In this research, the tableting properties of α-melibiose monohydrate were studied. Melibiose is a disaccharide which bears structural resemblance to lactose, because they both consist of galactose and glucose monosaccharide subunits. Compactibility and deformation behavior of two melibiose batches from different suppliers were studied and compared with α-lactose monohydrate and some other typical tableting excipients. Differences in the deformation behavior were determined comparing the shape of the Heckel plots, the yield pressure values and the strain rate sensitivity (SRS) indexes. In addition, the effect of moisture on the tabletability was studied. According to the yield pressures and SRS indexes melibiose was concluded to be fragmenting, even at higher degree than lactose monohydrate. However, the overall deformation behavior of melibiose was found to be similar to that of lactose monohydrate. Increase in moisture content resulted in higher tensile strengths of tablets for both melibiose batches, but it seemed to have more effect on compactibility of the other batch. In conclusion, melibiose has potential to be used as an excipient in tablet formulations.


Subject(s)
Chemistry, Pharmaceutical/methods , Melibiose/chemistry , Compressive Strength , Melibiose/analysis , Particle Size , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...