Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805104

ABSTRACT

Motion management has become an integral part of radiation therapy. Multiple approaches to motion management have been reported in the literature. To allow the sharing of experiences on current practice and emerging technology, the University of Sydney and the New South Wales/Australian Capital Territory branch of the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) held a two-day motion management workshop. To inform the workshop program, participants were invited to complete a survey prior to the workshop on current use of motion management techniques and their opinion on the effectiveness of each approach. A post-workshop survey was also conducted, designed to capture changes in opinion as a result of workshop participation. The online workshop was the most well attended ever hosted by the ACPSEM, with over 300 participants and a response to the pre-workshop survey was received from at least 60% of the radiation therapy centres in Australia and New Zealand. Motion management is extensively used in the region with use of deep inspiration breath-hold (DIBH) reported by 98% of centres for left-sided breast treatments and 91% for at least some right-sided breast treatments. Surface guided radiation therapy (SGRT) was the most popular session at the workshop and survey results showed that the use of SGRT is likely to increase. The workshop provided an excellent opportunity for the exchange of knowledge and experience, with most survey respondents indicating that their participation would lead to improvements in the quality of delivery of treatments at their centres.

2.
Phys Eng Sci Med ; 47(1): 49-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37843767

ABSTRACT

Kilovoltage therapy units are used for superficial radiotherapy treatment delivery. Peer reviewed studies for MV linear accelerators describe tolerances to dosimetrically match multiple linear accelerators enabling patient treatment on any matched machine. There is an absence of literature on using a single planning data set for multiple kilovoltage units which have limited ability for beam adjustment. This study reviewed kilovoltage dosimetry and treatment planning scenarios to evaluate the feasibility of using ACPSEM annual QA tolerances to determine whether two units (of the same make and model) were dosimetrically matched. The dosimetric characteristics, such as measured half value layer (HVL), percentage depth dose (PDD), applicator factor and output variation with stand-off distance for each kV unit were compared to assess the agreement. Independent planning data based on the measured HVL for each beam energy from each kV unit was prepared. Monitor unit (MU) calculations were performed using both sets of planning data for approximately 200 clinical scenarios and compared with an overall agreement between units of < 2%. Additionally, a dosimetry measurement comparison was completed at each site for a subset of nine scenarios. All machine characterisation measurements were within the ACPSEM Annual QA tolerances, and dosimetric testing was within 2.5%. This work demonstrates that using a single set of planning data for two kilovoltage units is feasible, resulting in a clinical impact within published uncertainty.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Particle Accelerators , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...