Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(14): 9597-9604, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38546271

ABSTRACT

Although crown ethers can selectively bind many metal cations, little is known regarding the solution properties of crown ether complexes of the uranyl dication, UO22+. Here, the synthesis and characterization of isolable complexes in which the uranyl dication is bound in an 18-crown-6-like moiety are reported. A tailored macrocyclic ligand, templated with a Pt(II) center, captures UO22+ in the crown moiety, as demonstrated by results from single-crystal X-ray diffraction analysis. The U(V) oxidation state becomes accessible at a quite positive potential (E1/2) of -0.18 V vs Fc+/0 upon complexation, representing the most positive UVI/UV potential yet reported for the UO2n+ core. Isolation and characterization of the U(V) form of the crown complex are also reported here; there are no prior reports of reduced uranyl crown ether complexes, but U(V) is clearly stabilized by crown chelation. Joint computational studies show that the electronic structure of the U(V) form results in significant weakening of U-Ooxo bonding despite the quite positive reduction potential at which this species can be accessed, underscoring that crown-ligated uranyl species could demonstrate unique reactivity under only modestly reducing conditions.

2.
Inorg Chem ; 62(39): 16131-16148, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721409

ABSTRACT

The 2,2'-bipyridyl-6,6'-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO22+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO22+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e- reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.

SELECTION OF CITATIONS
SEARCH DETAIL
...