Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1091(1): 40-6, 2006 May 26.
Article in English | MEDLINE | ID: mdl-16499890

ABSTRACT

The purposes of this research were to quantify gravity receptor function in inbred mouse strains and compare vestibular and auditory function for strain- and age-matched animals. Vestibular evoked potentials (VsEPs) were collected for 19 inbred strains at ages from 35 to 389 days old. On average, C57BL/6J (35 to 190 days), BALB/cByJ, C3H/HeSnJ, CBA/J, and young LP/J mice had VsEP thresholds comparable to normal. Elevated VsEP thresholds were found for elderly C57BL/6J, NOD.NONH2(kb), BUB/BnJ, A/J, DBA/2J, NOD/LtJ, A/WySnJ, MRL/MpJ, A/HeJ, CAST/Ei, SJL/J, elderly LP/J, and CE/J. These results suggest that otolithic function varies among inbred strains and several strains displayed gravity receptor deficits by 90 days old. Auditory brainstem response (ABR) thresholds were compared to VsEP thresholds for 14 age-matched strains. C57BL/6J mice (up to 190 days) showed normal VsEPs with normal to mildly elevated ABR thresholds. Four strains (BUB/BnJ, NOD/LtJ, A/J, elderly LP/J) had significant hearing loss and elevated VsEP thresholds. Four strains (DBA/2J, A/WySnJ, NOD.NONH2(kb), A/HeJ) had elevated VsEP thresholds (including absent VsEPs) with mild to moderate elevations in ABR thresholds. Three strains (MRL/MpJ, Ce/J, SJL/J) had significant vestibular loss with no concomitant hearing loss. These results suggest that functional change in one sensory system does not obligate change in the other. We hypothesize that genes responsible for early onset hearing loss may affect otolithic function, yet the time course of functional change may vary. In addition, some genetic mutations may produce primarily gravity receptor deficits. Potential genes responsible for selective gravity receptor impairment demonstrated herein remain to be identified.


Subject(s)
Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Mice, Inbred Strains/physiology , Phenotype , Age Factors , Animals , Female , Male , Mice , Reaction Time/physiology
2.
J Assoc Res Otolaryngol ; 6(4): 297-310, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16235133

ABSTRACT

The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains were analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls and all strain averages were contrasted to normative ranges. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espn(je), Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmie(sr), Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sans(js), hr, Kcne1pkr and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits--an expected finding because the abnormality in Otxljv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also showed abnormalities in one or more VsEP response parameters, suggesting that vestibular dysfunction, although less severe, may be present in some heterozygous animals.


Subject(s)
Vestibule, Labyrinth/physiology , Animals , Cerebellum/physiology , Evoked Potentials, Auditory , Gravitation , Humans , Mice , Mice, Inbred Strains , Mice, Knockout
3.
Hear Res ; 191(1-2): 34-40, 2004 May.
Article in English | MEDLINE | ID: mdl-15109702

ABSTRACT

The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.


Subject(s)
Gravity Sensing/physiology , Otolithic Membrane/abnormalities , Animals , Case-Control Studies , Evoked Potentials, Auditory, Brain Stem , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Saccule and Utricle/physiology , Temporal Bone
4.
Hear Res ; 164(1-2): 231-9, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11950541

ABSTRACT

Susceptibility to noise-induced hearing loss (NIHL) is poorly understood at the genetic level. Mice homozygous for a null mutation in the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) gene are deaf (Kozel et al., 1998). PMCA2 is expressed on outer hair cell stereocilia (Furuta et al., 1998). Fridberger et al. (1998) observed that the outer hair cell cytoplasmic Ca2+ concentration rises following acoustic overstimulation. We hypothesized that Pmca2+/- mice may be more susceptible to NIHL. Since the auditory brainstem response (ABR) thresholds of Pmca2+/- mice vary with the presence of a modifier locus (Noben-Trauth et al., 1997), Pmca2+/- mice were outcrossed to normal hearing CAST/Ei mice. The pre-exposure ABR thresholds of the resulting Pmca2+/+ and Pmca2+/- siblings were indistinguishable. Groups of these mice were exposed to varying intensities of broadband noise, and ABR threshold shifts were calculated. Fifteen days following an 8 h, 113 dB noise exposure, the Pmca2+/- mice displayed significant (P < or = 0.0007) permanent threshold shifts at 16 and 32 kHz that were 15 or 25 dB greater than those observed in Pmca2+/+ littermates. Pmca2 may be the first gene with a known mutated protein product that confers increased susceptibility to NIHL.


Subject(s)
Calcium-Transporting ATPases/deficiency , Hearing Loss, Noise-Induced/enzymology , Hearing Loss, Noise-Induced/etiology , Animals , Auditory Threshold , Calcium-Transporting ATPases/genetics , Cell Membrane/enzymology , Evoked Potentials, Auditory, Brain Stem , Genetic Variation , Hearing Loss, Noise-Induced/genetics , Hearing Loss, Noise-Induced/physiopathology , Heterozygote , Humans , Isoenzymes/deficiency , Isoenzymes/genetics , Mice , Mice, Inbred C3H , Mice, Knockout , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...