Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(22): 3160-3174, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36805573

ABSTRACT

Organic thermoelectricity is a blooming field of research that employs organic (semi)conductors to recycle waste heat through its partial conversion to electrical power. Such a conversion occurs by means of organic thermoelectric generator (OTEG) devices. The recent process on the synthesis of novel materials and on the understanding of doping mechanisms to increase conductivity has tremendously narrowed the gap between laboratory research and their application in actual applications. This Feature Article intends to highlight the impressive progress in materials and fabrication techniques for OTEGs made in recent years.

2.
Sci Rep ; 7(1): 10526, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874796

ABSTRACT

Self-assembly methods allow to obtain ordered patterns on surfaces with exquisite precision, but often lack in effectiveness over large areas. Here we report on the realization of hierarchically ordered polymethylmethacrylate (PMMA) nanofibres and nanodots over large areas from solution via a fast, easy and low-cost method named ASB-SANS, based on a ternary solution that is cast on the substrate. Simple changes to the ternary solution composition allow to control the transition from nanofibres to nanodots, via a wide range of intermediate topologies. The ternary solution includes the material to be patterned, a liquid solvent and a solid substance able to sublimate. The analysis of the fibres/dots width and inter-pattern distance variations with respect to the ratio between the solution components suggests that the macromolecular chains mobility in the solidified sublimating substance follows Zimm-like models (mobility of macromolecules in diluted liquid solutions). A qualitative explanation of the self-assembly phenomena originating the observed nanopatterns is given. Finally, ASB-SANS-generated PMMA nanodots arrays have been used as lithographic masks for a silicon substrate and submitted to Inductively Coupled Plasma-Reactive Ion Etching (ICP-RIE). As a result, nanopillars with remarkably high aspect ratios have been achieved over areas as large as several millimeters square, highlighting an interesting potential of ASB-SANS in practical applications like photon trapping in photovoltaic cells, surface-enhanced sensors, plasmonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...