Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732600

ABSTRACT

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Subject(s)
Cross-Over Studies , Fruit and Vegetable Juices , Interleukin-6 , Lipopolysaccharide Receptors , Malus , Marathon Running , Physical Endurance , Polyphenols , Humans , Male , Female , Adult , Middle Aged , Polyphenols/pharmacology , Polyphenols/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Marathon Running/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides/blood , Fatty Acid-Binding Proteins/blood , Running/physiology , Young Adult
3.
BMC Plant Biol ; 24(1): 345, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684952

ABSTRACT

BACKGROUND: During the pandemic, the interest in colorful wild small fruits increased due to their positive effects on health. Also it has become very important to offer species with high nutritional value as fresh or processed products for human consumption due to increasing world population and decreasing arable land. In this context, we characterized the horticultural characteristics of 11 rosehip genotypes grown from seeds. RESULTS: Citric acid was determined as the main organic acid in all the genotypes investigated. The mean values of the organic acids obtained from all the genotypes were found to be as follows: citric acid (7177 mg L-1), malic acid (3669 mg L-1), tartaric acid (1834 mg L-1), oxalic acid (1258 mg L-1), carboxylic acid (631.9 mg L-1), shikimic acid (157.8 mg L-1), ascorbic acid (155 mg L-1), and acetic acid (20.9 mg L-1). Ellagic acid was the dominant phenolic compound (90.1 mg L-1 - 96.2 mg L-1) in all genotypes. The average values obtained from all genotypes for total phenolics, total flavonoids, and antioxidant activity were 37 261 mg GAE L-1, 526.2 mg quercetin L-1, and 93.6%, respectively. These characteristics had the lowest coefficients of variation, which indicated that all genotypes were similar regarding high biochemical with antioxidant effect. In addition, fruit width, fruit length, and fruit weight varied between 13.0 and 17.3 mm, 20.7 and 25.5 mm, and 1.4 and 2.7 g, respectively. CONCLUSIONS: The genotypes were categorized according to different purposes, such as suitability for wine production, making vinegar, etc. While the pomological characteristics were strongly positively correlated among themselves, they were generally found to be negatively correlated with the phytochemical characteristics. Categorizing genotypes according to different usage purposes can improve the agricultural and industrial application of rosehip and enhance their breeding efficacy.


Subject(s)
Genotype , Rosa , Rosa/genetics , Antioxidants/metabolism , Fruit/genetics , Fruit/growth & development , Phenols , Horticulture , Flavonoids
6.
Adv Pharmacol Pharm Sci ; 2024: 6681873, 2024.
Article in English | MEDLINE | ID: mdl-38293706

ABSTRACT

This research investigated if pitavastatin (Pita) might protect rats' kidneys against thioacetamide (TAA). By altering the PTEN/AKT/mTOR pathway, pitavastatin may boost kidney antioxidant capacity and minimize oxidative damage. Statins have several benefits, including antioxidant and anti-inflammatory characteristics. The principal hypothesis of this study was that Pita can regulate the miR-93/PTEN/AKT/mTOR pathways, which is thought to be responsible for its renoprotective effects. The experiment divided male rats into four groups. Group 1 included untreated rats as the control. Group 2 included rats which received TAA (100 mg/kg intraperitoneally thrice a week for two weeks) to destroy their kidneys. Groups 3 and 4 included rats which received Pita orally at 0.4 and 0.8 mg/kg for 14 days after TAA injections. Renal injury increased BUN, creatinine, and MDA levels and decreased glutathione (GSH) levels. Pitavastatin prevented these alterations. TAA decreased PTEN and increased miR-93, Akt, p-Akt, mTOR, and Stat3 in the kidneys. Pitavastatin also regulated the associated culprit pathway, miR-93/PTEN/Akt/mTOR. In addition, TAA induced adverse effects on the kidney tissue, which were significantly ameliorated by pitavastatin treatment. The findings suggest that pitavastatin can attenuate renal injury, likely by regulating the miR-93/PTEN/Akt/mTOR pathway. This modulation of the pathway appears to contribute to the protective effects of pitavastatin against TAA-induced renal injury, adding to the growing evidence of the pleiotropic benefits of statins in renal health.

7.
J Cell Mol Med ; 28(3): e18116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38214394

ABSTRACT

Liver fibrosis is a common chronic hepatic disease. This study aimed to investigate the effect of pitavastatin (Pit) against thioacetamide (TAA)-induced liver fibrosis. Rats were divided into four groups: (1) control group; (2) TAA group (100 mg/kg, i.p.) three times weekly for 2 weeks; (3 and 4) TAA/Pit-treated group, in which Pit was administered orally (0.4 and 0.8 mg/kg/day) for 2 weeks following TAA injections. TAA caused liver damage manifested by elevated serum transaminases, reduced albumin and histological alterations. Hepatic malondialdehyde (MDA) was increased, and glutathione (GSH) and superoxide dismutase (SOD) were decreased in TAA-administered rats. TAA upregulated the inflammatory markers NF-κB, NF-κB p65, TNF-α and IL-6. Treatment with Pit ameliorated serum transaminases, elevated serum albumin and prevented histopathological changes in TAA-intoxicated rats. Pit suppressed MDA, NF-κB, NF-κB p65, the inflammatory cytokines and PI3K mRNA in TAA-intoxicated rats. In addition, Pit enhanced hepatic antioxidants and boosted the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA. Moreover, immunohistological studies supported the ability of Pit to reduce liver fibrosis via suppressing p-AKT expression. In conclusion, Pit effectively prevents TAA-induced liver fibrosis by attenuating oxidative stress and the inflammatory response. The hepatoprotective efficacy of Pit was associated with the upregulation of Nrf2/HO-1 and downregulation of NF-κB and PI3K/Akt signalling pathways.


Subject(s)
Heme Oxygenase-1 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , NF-kappa B , Quinolines , Animals , Rats , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/therapeutic use , RNA, Messenger/metabolism , Transaminases/metabolism , Transaminases/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
8.
PLoS One ; 18(12): e0295968, 2023.
Article in English | MEDLINE | ID: mdl-38096213

ABSTRACT

Herein, an analytical method using gas chromatography-tandem mass spectrometry (GC‒MS/MS) was devised to detect the presence of the troublesome pesticide dimethipin in various animal-based food products, including chicken, pork, beef, eggs, and milk. The injection port was primed with a matrix derived from pepper leaves that acts as an analyte protectant (AP) to safeguard the target compound from thermal degradation during gas chromatography. The presence of AP resulted in a remarkable limit of quantification of 0.005 mg/kg for dimethipin in five matrices. Three different versions (original, EN, and AOAC) of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method were compared for dimethipin extraction, with a double-layer solid-phase extraction (SPE) cartridge utilized for matrix purification. A seven-point external calibration curve was established for dimethipin in the five matrices, demonstrating excellent linearity with determination coefficients (R2) ≥ 0.998. The developed quantitative method was validated by fortifying each matrix with three different concentrations of standard dimethipin, and the average recovery fell within the acceptable range outlined in the CODEX guidelines (ranging from 88.8% to 110.0%), with a relative standard deviation (RSD) of ≤ 11.97%. This method effectively addresses the challenge of analyzing dimethipin and can therefore be used as a routine monitoring tool for dimethipin across various matrices.


Subject(s)
Pesticide Residues , Pesticides , Animals , Cattle , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry , Pesticides/analysis , Eggs/analysis , Milk/chemistry , Pesticide Residues/analysis , Solid Phase Extraction/methods
9.
Biomed Res Int ; 2023: 8794214, 2023.
Article in English | MEDLINE | ID: mdl-38054046

ABSTRACT

Goldenberry (GB) is a promising fruit that can be a constituent in many possible nourishments. No notifications were obtained regarding the impact of exposure to goldenberry extract in the viewpoint of blood rheological properties as well as erythrocyte osmotic fragility of red blood cells (RBCs) in obese rats. A substantial reduction in plasma triglyceride, total cholesterol, and LDL, with a considerable increment in HDL levels relative to the obese group (p ≤ 0.05), was observed in rats receiving low and high doses of GB, accompanied by restoration of SOD activity and GSH levels. Rheological parameters of rats' blood have been studied over a wide range of shear rates (225-1875 s-1). A significant decrease in blood viscosity in rats who received low and high doses of GB extract was compatible with every shear rate compared to the control group. The shear stress values of the obese rats reduced appreciably (p ≤ 0.05) in all values of shear rate (from 75 to 500 s-1) proportional to the control group, while in the groups that received low and high doses of GB extract, shear stress was restored to the control values. Finally, administration of GB extract significantly decreased yield stress and indices of whole blood aggregation, with an extremely substantial increment in flow rate, in rats given low or high doses of GB compared to obese ones. The result also showed a decrease in both the average raised osmotic fragility and the hemolysis rate in rats after supplementation with low and high doses of GB extract.


Subject(s)
Erythrocytes , Fruit , Rats , Animals , Osmotic Fragility , Blood Viscosity , Rheology
10.
Front Nutr ; 10: 1255857, 2023.
Article in English | MEDLINE | ID: mdl-38024361

ABSTRACT

This study analyzed 34 canned fish products, including 28 tuna specimens, 3 salmon specimens, 1 mackerel specimen, and 1 anchovy specimen, from 13 different brands purchased in Türkiye. The study aimed to determine metal/metalloid levels in canned fish and potential health risks for both children and adult consumers. The metal/metalloid levels in the samples were determined using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), with the range of levels found as follows (mg/kg, ww): Fe (12.12-101.4), Cu (2.19-11.68), Zn (4.06-33.56), Se (0.24-10.74), Al (1.41-14.45), Cr (0.06-4.08), Pb (0.10-0.43), Cd (0.001-0.110), and As (0.01-0.13). Estimated weekly intake (EWI) levels were found that the consumption of canned fish products did not pose any risk based on the EWI levels and provisional tolerable weekly intake (PTWI) limits. However, three tuna samples had target hazard quotient (THQ) levels above the threshold (>1). Arsenic levels were found to increase the carcinogenic risk for child consumers if they heavily consumed 18 canned fish products, including 15 tuna, 2 salmon, and 1 mackerel. The maximum allowable consumption rates (CRmm) for each canned fish product were calculated monthly. Consequently, the consumption of canned fish by children can pose health risks.

11.
Adv Food Nutr Res ; 107: 213-261, 2023.
Article in English | MEDLINE | ID: mdl-37898541

ABSTRACT

Due to the negative impacts of food loss and food waste on the environment, economy, and social contexts, it is a necessity to take action in order to reduce these wastes from post-harvest to distribution. In addition to waste reduction, bioactives obtained from by-products or wastes can be utilized by new end-users by considering the safety aspects. It has been reported that physical, biological, and chemical safety features of raw materials, instruments, environment, and processing methods should be assessed before and during valorization. It has also been indicated that meat by-products/wastes including collagen, gelatin, polysaccharides, proteins, amino acids, lipids, enzymes and chitosan; dairy by-products/wastes including whey products, buttermilk and ghee residue; fruit and vegetable by-products/wastes such as pomace, leaves, skins, seeds, stems, seed oils, gums, fiber, polyphenols, starch, cellulose, galactomannan, pectin; cereal by-products/wastes like vitamins, dietary fibers, fats, proteins, starch, husk, and trub have been utilized as animal feed, food supplements, edible coating, bio-based active packaging systems, emulsifiers, water binders, gelling, stabilizing, foaming or whipping agents. This chapter will explain the safety aspects of bioactives obtained from various by-products/wastes. Additionally, applications of bioactives obtained from by-products/wastes have been included in detail by emphasizing the source, form of bioactive compound as well as the effect of said bioactive compound.


Subject(s)
Refuse Disposal , Animals , Fruit/chemistry , Dietary Supplements/analysis , Polyphenols/analysis , Starch/analysis
12.
Microorganisms ; 11(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894271

ABSTRACT

Conjugated linoleic acid (CLA) is perceived to protect the body from metabolic diseases. This study was conducted to determine the effect of Lactiplantibacillus plantarum (Lp. plantarum) on CLA production and sensory characteristics of cheddar cheese. Lp. plantarum can convert linoleic acid (LA) to CLA. To increase CLA in cheddar cheese and monitor the conversion of LA to CLA by Lp. plantarum, the LA content of cheese milk (3.4% fat) was increased by partially replacing fat with safflower oil (85% LA of oil) at 0, 3, 6, and 9% concentrations (T1, T2, T3, and T4). Furthermore, Lp. plantarum 108 colony-forming units (CFU)/mL (8 log CFU mL-1) was added in all treatments along with traditional cheddar cheese culture (Lactococcus lactis ssp. lactis and L. lactis ssp. cremoris). After 30 days of ripening, Lp. plantarum in T1, T2, T3, and T4 was 6.75, 6.72, 6.65, and 6.55 log CFU g-1. After 60 days of ripening, Lp. plantarum in T1, T2, T3, and T4 was 6.35, 6.27, 6.19, and 6.32 log CFU g-1. After 60 days of ripening, Lp. plantarum in T1, T2, T3, and T4 was 6.41, 6.25, 6.69, and 6.65 log CFU g-1. GC-MS analysis showed that concentrations of CLA in the 90 days' control, T1, T2, T3, and T4 were 1.18, 2.73, 4.44, 6.24, and 9.57 mg/100 g, respectively. HPLC analysis revealed that treatments containing Lp. plantarum and LA presented higher concentrations of organic acids than the control sample. The addition of safflower oil at all concentrations did not affect cheese composition, free fatty acids (FFA), and the peroxide value (POV) of cheddar cheese. Color flavor and texture scores of experimental cheeses were not different from the control cheese. It was concluded that Lp. plantarum and safflower oil can be used to increase CLA production in cheddar cheese.

13.
Food Res Int ; 172: 113079, 2023 10.
Article in English | MEDLINE | ID: mdl-37689859

ABSTRACT

Cold plasma (CP) is one of the novel non-thermal food processing technologies, which has the potential to extend the shelf-life of plant-based food products without adversely affecting the nutritional value and sensory characteristics. Besides microbial inactivation, this technology has been explored for food functionality, pesticide control, and allergen removals. Cold plasma technology presents positive results in applications related to food processing at a laboratory scale. This review discusses applications of CP technology and its effect on the constituents of plant-based food products including proteins, lipids, carbohydrates, and polar and non-polar secondary plant metabolites. As proven by the publications in the food field, the influence of CP on the food constituents and sensory quality of various food materials are mainly based on CP-related factors such as processing time, voltage level, power, frequency, type of gas, gas flow rate as well as the amount of sample, type, and content of food constituents. In addition to these, changes in the secondary plant metabolites depend on the action of CP on both cell membrane breakdown and increase/decrease in the scavenging compounds. This technology offers a good alternative to conventional methods by inactivating enzymes and increasing antioxidant levels. With a waterless and chemical-free property, this sustainable and energy-efficient technology presents several advantages in food applications. However, scaling up CP by ensuring uniform plasma treatment is a major challenge. Further investigation is required to provide information regarding the toxicity of plasma-treated food products.


Subject(s)
Plasma Gases , Food , Antioxidants , Food Handling , Nutritive Value
14.
Sci Rep ; 13(1): 14929, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697015

ABSTRACT

The kidney flushes out toxic substances and metabolic waste products, and homeostasis is maintained owing to the kidney efforts. Unfortunately, kidney disease is one of the illnesses with a poor prognosis and a high death rate. The current investigation was set out to assess erythropoietin (EPO) potential therapeutic benefits against thioacetamide (TAA)-induced kidney injury in rats. EPO treatment improved kidney functions, ameliorated serum urea, creatinine, and malondialdehyde, increased renal levels of reduced glutathione, and slowed the rise of JAK2, STAT5, AMPK, and their phosphorylated forms induced by TAA. EPO treatment also greatly suppressed JAK2, Phosphatidylinositol 3-kinases, and The Protein Kinase R-like ER Kinase gene expressions and mitigated the histopathological alterations brought on by TAA toxicity. EPO antioxidant and anti-inflammatory properties protected TAA-damaged kidneys. EPO regulates AMPK, JAK2/STAT5, and pro-inflammatory mediator synthesis.


Subject(s)
AMP-Activated Protein Kinases , Erythropoietin , Animals , Rats , Thioacetamide/toxicity , STAT5 Transcription Factor , Erythropoietin/pharmacology , Kidney
15.
Front Microbiol ; 14: 1209509, 2023.
Article in English | MEDLINE | ID: mdl-37711688

ABSTRACT

Cheddar-type cheese produced from buttermilk had softer texture than standard cheddar cheese due to lower fat content of buttermilk. Fat is extremely important for the functional characteristics and optimum textural attributes of cheese. The effect of different fat contents of buttermilk on chemical characteristics of cheddar-type cheese is not previously investigated. This investigation was conducted to know the effect of different fat contents of buttermilk on fatty acids composition, organic acids, vitamins, lipolysis and sensory characteristics of cheddar-type cheese. Cheddar-type cheese was produced from buttermilk having 1, 1.75, 2.50 and 3.25% fat contents (control, T1, T2 and T3). Fat content of control, T1, T2 and T3 were 9.81, 16.34, 25.17 and 31.19%. Fatty acids profile was determined on GC-MS, organic acids and vitamin A and E were determined on HPLC. Free fatty acids, peroxide value and cholesterol were determined. Cheddar-style cheese produced from buttermilk (1% fat) showed that it had softer texture and lacking typical cheese flavor. Gas chromatography-mass spectrometry (GC-MS) analysis showed that long-chain unsaturated fatty acids in control, T1, T2 and T3 samples were 45.88, 45.78, 45.90 and 46.19 mg/100 g. High Performance Liquid Chromatography (HPLC) analysis showed that lactic acid, propionic acid, citric acid and acetic acid gradually and steadily increased during the storage interval of 90 days. At the age of 90 days, lactic acid in control, T1, T2 and T3 was 4,789, 5,487, 6,571 and 8,049 ppm, respectively. At the end of ripening duration of 90 days, free fatty acids in control, T1, T2 and T3 were 0.29, 0.31, 0.35 and 0.42% with no difference in peroxide value. Stability of vitamin A after 90 days storage control, T1, T2 and T3 was 87.0, 80.0, 94.0 and 91.0%. Flavor score of cheddar-type cheese produced from butter milk having 1.0, 2.5 and 3.25% fat content was 81, 89 and 91% of total score (9). Hence, it is concluded that cheddar-type cheese can be produced from buttermilk having 2.5 and 3.25% fat contents with acceptable sensory attributes. Application of buttermilk for the production of other cheese varieties should be studied.

16.
Microorganisms ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764187

ABSTRACT

Spinach (Spinacia oleracea) is a winter-season green, leafy vegetable grown all over the world, belonging to the family Amaranthus, sub-family Chenopodiaceae. Spinach is a low-caloric food and an enormous source of micronutrients, e.g., calcium, folates, zinc, retinol, iron, ascorbic acid and magnesium. Contrarily, it also contains a variety of anti-nutritional factors, e.g., alkaloids, phytates, saponins, oxalates, tannins and many other natural toxicants which may hinder nutrient-absorption. This study was aimed at investigating the effect of fermentation on improving the nutrient-delivering potential of spinach and mitigating its burden of antinutrients and toxicants at three growth stages: the 1st growth stage as baby leaves, the 2nd growth stage at the coarse stage, and the 3rd growth stage at maturation. The results revealed the significant (p < 0.05) effect of fermentation on increasing the protein and fiber content of spinach powder from 2.53 to 3.53% and 19.33 to 22.03%, respectively, and on reducing total carbohydrate content from 52.92 to 40.52%; the effect was consistent in all three growth stages. A significant decline in alkaloids (6.45 to 2.20 mg/100 g), oxalates (0.07 mg/100 g to 0.02 mg/100 g), phytates (1.97 to 0.43 mg/100 g) and glucosinolates (201 to 10.50 µmol/g) was observed as a result of fermentation using Lactiplantibacillus plantarum. Fermentation had no impact on total phenolic content and the antioxidant potential of spinach, as evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays. This study proposes fermentation as a safer bioprocess for improving the nutrient-delivering potential of spinach, and suggests processed powders made from spinach as a cost-effective complement to existing plant proteins.

17.
Front Microbiol ; 14: 1216674, 2023.
Article in English | MEDLINE | ID: mdl-37664108

ABSTRACT

Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.

18.
Oxid Med Cell Longev ; 2023: 5514248, 2023.
Article in English | MEDLINE | ID: mdl-37649466

ABSTRACT

Erythropoietin (EPO) is recognized for its function in erythropoiesis; however, its potential antifibrotic effect against liver fibrosis remains unknown. This study examined whether EPO affects thioacetamide (TAA)-induced liver fibrosis by concentrating on the Toll-like receptor 4 (TLR4) cascade and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as possible pathways. Male Wistar rats were randomized into four groups, which included: the negative control group, the TAA group (intraperitoneal; TAA 100 mg/kg three times per week for 2 weeks), and EPO-treated groups (150 and 300 IU/kg, i.p.) for 2 weeks after TAA injections. EPO attenuated hepatic fibrosis in a dosage-dependent way, as manifested by the diminution in serum alanine aminotransferase and aspartate aminotransferase activities, as well as the increase in albumin level. EPO inhibited the increase in tissue levels of tumor necrosis factors-α, interleukin-1ß, transforming growth factor-ß1, and TLR4 and raised tissue levels of PI3K and p-PI3K. EPO antioxidant properties were demonstrated by restoring hepatic glutathione and superoxide dismutase by preventing the accumulation of hepatic malondialdehyde. Further, EPO increased the protein expression of PI3K and Akt and decreased TLR4 protein expression. Immunohistochemically, EPO treatment altered tissue histology and downregulated mitogen-activated protein kinase protein expression. Overall, the research suggested that EPO could prevent TAA-induced hepatic fibrosis through upregulating the PI3K/Akt signaling cascade and downregulation the TLR4 downstream axis.


Subject(s)
Erythropoietin , Phosphatidylinositol 3-Kinases , Male , Rats , Animals , Rats, Wistar , Proto-Oncogene Proteins c-akt , Thioacetamide/toxicity , Phosphatidylinositol 3-Kinase , Toll-Like Receptor 4 , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Signal Transduction
19.
Pathogens ; 12(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513805

ABSTRACT

Campylobacter jejuni is a Gram-negative bacterium which is considered as the most reported cause of foodborne infection, especially for poultry species. The object of this work is to evaluate the occurrence of C. jejuni in chicken meat as well its control via three types of sorghum extracts (white sorghum (WS), yellow sorghum (YS), and red sorghum (RS)); antibacterial activity, antioxidant power, and cytotoxicity of sorghum extracts were also assessed. It was found that C. jejuni is very abundant in chicken meat, especially breast and thigh. WS extract showed more effectiveness than both yellow and red ones. Lyophilized WS extract offered high total phenolic compounds (TPCs) and total flavonoid compounds (TFCs) of 64.2 ± 0.8 mg gallic acid equivalent (GAE/g) and 33.9 ± 0.4 mg catechol equivalent (CE)/g, respectively. Concerning the antibacterial and antioxidant activities, WS showed high and significant antibacterial activity (p < 0.001); hence, WS displayed a minimum inhibitory concentration (MIC) of 6.25%, and revealed an inhibition zone of 7.8 ± 0.3 mm; it also showed an IC50 at a concentration of 34.6 µg/mL. In our study, different samples of chicken fillet were collected and inoculated with pathogenic C. jejuni and stored at 4 °C. Inoculated samples were treated with lyophilized WS extract at (2%, 4%, and 6%), the 2% treatment showed a full reduction in C. jejuni on the 10th day, the 4% treatment showed a full reduction in C. jejuni on the 8th day, while the 6% treatment showed a full reduction in C. jejuni on the 6th day. Additionally, 2%, 4%, and 6% WS extracts were applied on un-inoculated grilled chicken fillet, which enhanced its sensory attributes. In sum, WS extract is a promising natural preservative for chicken meat with accepted sensory evaluation results thanks to its high antibacterial and antioxidant potentials.

20.
Front Nutr ; 10: 1158473, 2023.
Article in English | MEDLINE | ID: mdl-37346911

ABSTRACT

Introduction: Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods: This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results: A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion: Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...