Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 102(8): e03421, 2021 08.
Article in English | MEDLINE | ID: mdl-34086977

ABSTRACT

Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 µg in body mass), neutral in the medium-sized (arthropods of 1 µg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.


Subject(s)
Food Chain , Nematoda , Animals , Biodiversity , Ecosystem , Soil
2.
Curr Biol ; 30(22): 4500-4509.e5, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32976804

ABSTRACT

The origin of animals is one of the most intensely studied evolutionary events, and our understanding of this transition was greatly advanced by analyses of unicellular relatives of animals, which have shown many "animal-specific" genes actually arose in protistan ancestors long before the emergence of animals [1-3]. These genes have complex distributions, and the protists have diverse lifestyles, so understanding their evolutionary significance requires both a robust phylogeny of animal relatives and a detailed understanding of their biology [4, 5]. But discoveries of new animal-related lineages are rare and historically biased to bacteriovores and parasites. Here, we characterize the morphology and transcriptome content of a new animal-related lineage, predatory flagellate Tunicaraptor unikontum. Tunicaraptor is an extremely small (3-5 µm) and morphologically simple cell superficially resembling some fungal zoospores, but it survives by preying on other eukaryotes, possibly using a dedicated but transient "mouth," which is unique for unicellular opisthokonts. The Tunicaraptor transcriptome encodes a full complement of flagellar genes and the flagella-associated calcium channel, which is only common to predatory animal relatives and missing in microbial parasites and grazers. Tunicaraptor also encodes several major classes of animal cell adhesion molecules, as well as transcription factors and homologs of proteins involved in neurodevelopment that have not been found in other animal-related lineages. Phylogenomics, including Tunicaraptor, challenges the existing framework used to reconstruct the evolution of animal-specific genes and emphasizes that the diversity of animal-related lineages may be better understood only once the smaller, more inconspicuous animal-related lineages are better studied. VIDEO ABSTRACT.


Subject(s)
Biodiversity , Biological Evolution , Eukaryota/physiology , Parasites/physiology , Predatory Behavior/physiology , Animals , Cell Adhesion Molecules/genetics , Flagella/genetics , Parasites/cytology , Phylogeny , Transcription Factors/genetics , Transcriptome/physiology
3.
BMC Biol ; 18(1): 39, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32272915

ABSTRACT

BACKGROUND: The origin of animals from their unicellular ancestor was one of the most important events in evolutionary history, but the nature and the order of events leading up to the emergence of multicellular animals are still highly uncertain. The diversity and biology of unicellular relatives of animals have strongly informed our understanding of the transition from single-celled organisms to the multicellular Metazoa. Here, we analyze the cellular structures and complex life cycles of the novel unicellular holozoans Pigoraptor and Syssomonas (Opisthokonta), and their implications for the origin of animals. RESULTS: Syssomonas and Pigoraptor are characterized by complex life cycles with a variety of cell types including flagellates, amoeboflagellates, amoeboid non-flagellar cells, and spherical cysts. The life cycles also include the formation of multicellular aggregations and syncytium-like structures, and an unusual diet for single-celled opisthokonts (partial cell fusion and joint sucking of a large eukaryotic prey), all of which provide new insights into the origin of multicellularity in Metazoa. Several existing models explaining the origin of multicellular animals have been put forward, but these data are interestingly consistent with one, the "synzoospore hypothesis." CONCLUSIONS: The feeding modes of the ancestral metazoan may have been more complex than previously thought, including not only bacterial prey, but also larger eukaryotic cells and organic structures. The ability to feed on large eukaryotic prey could have been a powerful trigger in the formation and development of both aggregative (e.g., joint feeding, which also implies signaling) and clonal (e.g., hypertrophic growth followed by palintomy) multicellular stages that played important roles in the emergence of multicellular animals.


Subject(s)
Biological Evolution , Eukaryota/physiology , Invertebrates/physiology , Animals , Evolution, Molecular , Phylogeny , Predatory Behavior
4.
Eur J Protistol ; 61(Pt A): 76-84, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28992521

ABSTRACT

The genus Euglypha contains the largest number of filose testate amoeba taxa which were mainly described based on the morphological characteristics of shells. Despite the increasing amount of molecular data, the phylogenetic relationships within the genus Euglypha remain unresolved. In this work we provide new data on SSU rRNA gene sequences, light and electron microscopy for the two euglyphid species Euglypha bryophilaBrown, 1911 and Euglypha cristataLeidy, 1874. Both species are characterised by the presence of a turf of spines on the aboral pole of the shells but differ in shell cross sections (elliptical and circular, respectively). A newly revealed feature of E. bryophila is a three-lobed thickening at the anterior margin and an elongated lobe at the posterior margin of apertural plates. The phylogenetic analysis shows that the species group together with the previously sequenced taxa of the genus Euglypha according to the shell cross-section. The subdivision of the genus based on the shell symmetry may reflect evolutionary trends to complication of the shell from radial to biradial symmetry. We also suggest that the shape of the anterior thickening of apertural plates and the lobe at the posterior margin can be used to distinguish Euglypha at the species level.


Subject(s)
Phylogeny , Rhizaria/classification , DNA, Protozoan/genetics , Rhizaria/cytology , Rhizaria/genetics , Rhizaria/ultrastructure , Species Specificity
5.
Eur J Protistol ; 61(Pt A): 85-91, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28992522

ABSTRACT

Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as indicators of surface wetness. To ensure data are robust and comparable it is important to consider methodological factors which may affect results. One significant question which has not been directly addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) affects data quality. In three contrasting locations in a Russian peatland we extracted samples of differing size, analysed testate amoebae and calculated a number of widely-used indices: species richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function predictions of water table depth. We found that there was a trend for larger samples to contain more species across the range of commonly-used sample sizes in ecological studies. Smaller samples sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems likely that analyses based on samples of different sizes may not produce consistent data. Decisions about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the disturbance involved in sample extraction. For most common ecological applications we suggest that samples of more than eight Sphagnum stems are likely to be desirable.


Subject(s)
Amoeba/physiology , Biodiversity , Ecology/methods , Wetlands , Russia , Sample Size , Sphagnopsida/parasitology
6.
Curr Biol ; 27(13): 2043-2050.e6, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28648822

ABSTRACT

Our understanding of the origin of animals has been transformed by characterizing their most closely related, unicellular sisters: the choanoflagellates, filastereans, and ichthyosporeans. Together with animals, these lineages make up the Holozoa [1, 2]. Many traits previously considered "animal specific" were subsequently found in other holozoans [3, 4], showing that they evolved before animals, although exactly when is currently uncertain because several key relationships remain unresolved [2, 5]. Here we report the morphology and transcriptome sequencing from three novel unicellular holozoans: Pigoraptor vietnamica and Pigoraptor chileana, which are related to filastereans, and Syssomonas multiformis, which forms a new lineage with Corallochytrium in phylogenomic analyses. All three species are predatory flagellates that feed on large eukaryotic prey, and all three also appear to exhibit complex life histories with several distinct stages, including multicellular clusters. Examination of genes associated with multicellularity in animals showed that the new filastereans contain a cell-adhesion gene repertoire similar to those of other species in this group. Syssomonas multiformis possessed a smaller complement overall but does encode genes absent from the earlier-branching ichthyosporeans. Analysis of the T-box transcription factor domain showed expansion of T-box transcription factors based on combination with a non-T-box domain (a receiver domain), which has not been described outside of vertebrates. This domain and other domains we identified in all unicellular holozoans are part of the two-component signaling system that has been lost in animals, suggesting the continued use of this system in the closest relatives of animals and emphasizing the importance of studying loss of function as well as gain in major evolutionary transitions.


Subject(s)
Biological Evolution , Eukaryota/classification , Eukaryota/physiology , Predatory Behavior , Signal Transduction , Animals , Eukaryota/genetics , Evolution, Molecular , Fetal Proteins/genetics , Fetal Proteins/metabolism , RNA, Ribosomal, 18S/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...