Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 23(39): 394207, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21921318

ABSTRACT

First-principles calculations were performed to investigate magnetic phenomena in surface reactions involving O(2). We present two magnetized surface cases: (1) oxidation of paramagnetic Ag, and magnetic properties of the high coverage oxide phase, which correspond to a magnetic impurity superlattice on paramagnetic surfaces and (2) oxidation of ferromagnetic Pt, represented by the Pt layer on M (M = Fe and Co) relevant to the oxidation reduction reaction (ORR) on Pt, in relation to both fundamental and application interests. In the first case, we found that the dissociative adsorption of O(2), resulting in oxide phases in Ag(111), reveals interesting magnetic interactions. We note that the magnetic states are induced by the ferromagnetic superexchange interactions and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Specifically, the superlattice structures with short O-O distances have an effective ferromagnetic superexchange and RKKY interaction. In the second case, we found that a magnetic moment is induced on the Pt layer by the M substrate. The spin polarization of Pt-d states is due to hybridization with M-d states. The d-band center (ε(d)) of Pt (on M), is shifted downwards with respect to pure Pt. However, because of the spin polarization, the otherwise filled spin-down d(zz) orbital in paramagnetic pure Pt is shifted towards the Fermi level. This promotes π(z↑)-d(zz↓) interactions, which influences the O(2)-Pt interaction at O(2) far from the surface. Details and mechanisms of these two magnetic phenomena are discussed.

2.
J Phys Condens Matter ; 21(49): 492201, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-21836186

ABSTRACT

The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected.

SELECTION OF CITATIONS
SEARCH DETAIL
...