Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7840, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030627

ABSTRACT

As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.


Subject(s)
Mammals , Rodentia , Animals , Rodentia/genetics , Mammals/genetics , Genome , Arvicolinae/genetics , Climate Change , Adaptation, Physiological/genetics
2.
Commun Biol ; 5(1): 981, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114276

ABSTRACT

The most likely pathway for many species to survive future climate change is by pre-existing trait variation providing a fitness advantage under the new climate. Here we evaluate the potential role of haemoglobin (Hb) variation in bank voles under future climate change. We model gene-climate relationships for two functionally distinct Hb types, HbS and HbF, which have a north-south distribution in Britain presenting an unusually tractable system linking genetic variation in physiology to geographical and temporal variation in climate. Projections to future climatic conditions suggest a change in relative climatic suitability that would result in HbS being displaced by HbF in northern Britain. This would facilitate local adaptation to future climate-without Hb displacement, populations in northern Britain would likely be suboptimally adapted because their Hb would not match local climatic conditions. Our study shows how pre-existing physiological differences can influence the adaptive capacity of species to climate change.


Subject(s)
Acclimatization , Climate Change , Adaptation, Physiological , Animals , Arvicolinae/genetics , Hemoglobins
3.
Trends Ecol Evol ; 37(6): 553-564, 2022 06.
Article in English | MEDLINE | ID: mdl-35450706

ABSTRACT

Spatial conservation prioritization (SCP) is a planning framework used to identify new conservation areas on the basis of the spatial distribution of species, ecosystems, and their services to human societies. The ongoing accumulation of intraspecific genetic data on a variety of species offers a way to gain knowledge of intraspecific genetic diversity and to estimate several population characteristics useful in conservation, such as dispersal and population size. Here, we review how intraspecific genetic data have been integrated into SCP and highlight their potential for identifying conservation area networks that represent intraspecific genetic diversity comprehensively and that ensure the long-term persistence of biodiversity in the face of global change.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Humans , Population Density
4.
Ecol Evol ; 11(12): 8054-8070, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188871

ABSTRACT

Species-level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal. We first model the environmental requirements for the bank vole using species-wide occurrences (210 filtered records) and then model each lineage separately to examine niche overlap and test for niche differentiation in geographic and environmental space. We then use the models to estimate past [Last Glacial Maximum (LGM) and mid-Holocene] habitat suitability to compare with previously hypothesized glacial refugia for this species. Environmental niches are statistically significantly different from each other for all pairs of lineages in geographic and environmental space, and these differences cannot be explained by habitat availability within their respective ranges. Together with the inability of most of the lineages to correctly predict the distributions of other lineages, these results support intraspecific ecological differentiation in the bank vole. Model projections of habitat suitability during the LGM support glacial survival of the bank vole in the Mediterranean region and in central and western Europe. Niche differences between lineages and the resulting spatial segregation of habitat suitability suggest ecological differentiation has played a role in determining the present phylogeographic patterns in the bank vole. Our study illustrates that models pooling lineages within a species may obscure the potential for different responses to climate change among populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...