Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712143

ABSTRACT

Drugs intended to target mammalian cells can have broad off-target effects on the human gut microbiota with potential downstream consequences for drug efficacy and side effect profiles. Yet, despite a rich literature on antibiotic resistance, we still know very little about the mechanisms through which commensal bacteria evade non-antibiotic drugs. Here, we focus on statins, one of the most prescribed drug types in the world and an essential tool in the prevention and treatment of high circulating cholesterol levels. Prior work in humans, mice, and cell culture support an off-target effect of statins on human gut bacteria; however, the genetic determinants of statin sensitivity remain unknown. We confirmed that simvastatin inhibits the growth of diverse human gut bacterial strains grown in communities and in pure cultures. Drug sensitivity varied between phyla and was dose-dependent. We selected two representative simvastatin-sensitive species for more in-depth analysis: Eggerthella lenta (phylum: Actinobacteriota) and Bacteroides thetaiotaomicron (phylum: Bacteroidota). Transcriptomics revealed that both bacterial species upregulate genes in response to simvastatin that alter the cell membrane, including fatty acid biogenesis (E. lenta) and drug efflux systems (B. thetaiotaomicron). Transposon mutagenesis identified a key efflux system in B. thetaiotaomicron that enables growth in the presence of statins. Taken together, these results emphasize the importance of the bacterial cell membrane in countering the off-target effects of host-targeted drugs. Continued mechanistic dissection of the various mechanisms through which the human gut microbiota evades drugs will be essential to understand and predict the effects of drug administration in human cohorts and the potential downstream consequences for health and disease.

2.
PLoS Biol ; 21(5): e3002125, 2023 05.
Article in English | MEDLINE | ID: mdl-37205710

ABSTRACT

Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Humans , Mice , Animals , Systems Biology , Ecosystem , Actinobacteria/metabolism
3.
Cell Rep ; 34(9): 108789, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33657378

ABSTRACT

Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.


Subject(s)
Bacteroides thetaiotaomicron/genetics , Diet , Energy Metabolism/genetics , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Adaptation, Physiological , Ammonium Compounds/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/drug effects , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/growth & development , Bile Acids and Salts/metabolism , Databases, Genetic , Disaccharides/metabolism , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mutation , Substrate Specificity , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 117(50): 32029-32037, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257580

ABSTRACT

Disease tolerance, the capacity of tissues to withstand damage caused by a stimulus without a decline in host fitness, varies across tissues, environmental conditions, and physiologic states. While disease tolerance is a known strategy of host defense, its role in noninfectious diseases has been understudied. Here, we provide evidence that a thermogenic fat-epithelial cell axis regulates intestinal disease tolerance during experimental colitis. We find that intestinal disease tolerance is a metabolically expensive trait, whose expression is restricted to thermoneutral mice and is not transferable by the microbiota. Instead, disease tolerance is dependent on the adrenergic state of thermogenic adipocytes, which indirectly regulate tolerogenic responses in intestinal epithelial cells. Our work has identified an unexpected mechanism that controls intestinal disease tolerance with implications for colitogenic diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Colitis/immunology , Colonic Neoplasms/immunology , Disease Resistance , Enterobacteriaceae Infections/immunology , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Animals , Azoxymethane/administration & dosage , Cell Communication , Citrobacter rodentium/pathogenicity , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/pathology , Dextran Sulfate/toxicity , Enterobacteriaceae Infections/chemically induced , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Epithelial Cells/metabolism , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Male , Mice , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Thermogenesis/immunology
5.
Nat Microbiol ; 5(5): 679-687, 2020 05.
Article in English | MEDLINE | ID: mdl-32203410

ABSTRACT

CRISPR-Cas systems are adaptive immune systems that protect bacteria from bacteriophage (phage) infection1. To provide immunity, RNA-guided protein surveillance complexes recognize foreign nucleic acids, triggering their destruction by Cas nucleases2. While the essential requirements for immune activity are well understood, the physiological cues that regulate CRISPR-Cas expression are not. Here, a forward genetic screen identifies a two-component system (KinB-AlgB), previously characterized in the regulation of Pseudomonas aeruginosa alginate biosynthesis3,4, as a regulator of the expression and activity of the P. aeruginosa Type I-F CRISPR-Cas system. Downstream of KinB-AlgB, activators of alginate production AlgU (a σE orthologue) and AlgR repress CRISPR-Cas activity during planktonic and surface-associated growth5. AmrZ, another alginate regulator6, is triggered to repress CRISPR-Cas immunity upon surface association. Pseudomonas phages and plasmids have taken advantage of this regulatory scheme and carry hijacked homologs of AmrZ that repress CRISPR-Cas expression and activity. This suggests that while CRISPR-Cas regulation may be important to limit self-toxicity, endogenous repressive pathways represent a vulnerability for parasite manipulation.


Subject(s)
Alginates/metabolism , Bacteria/metabolism , Bacteria/virology , Bacteriophages/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , CRISPR-Cas Systems , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genes, Regulator/genetics , Immunity , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/metabolism , Transcription Factors , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...