Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vascul Pharmacol ; 150: 107174, 2023 06.
Article in English | MEDLINE | ID: mdl-37105374

ABSTRACT

Maternal physiological hypercholesterolemia MPH, maternal total cholesterol (TC) levels at term of pregnancy ≤280 mg/dL) occurs to assure fetal development. Maternal supraphysiological hypercholesterolemia (MSPH, TC levels >280 mg/dL) is a pathological condition associated with maternal, placental, and fetal endothelial dysfunction and early neonatal atherosclerosis development. Small extracellular vesicles (sEVs) are delivered to the extracellular space by different cells, where they modulate cell functions by transporting active signaling molecules, including proteins and miRNA. AIM: To determine whether sEVs from MSPH women could alter the function of endothelial cells (angiogenesis, endothelial activation and nitric oxide synthesis capacity). METHODS: This study included 24 Chilean women (12 MPH and 12 MSPH). sEVs were isolated from maternal plasma and characterized by sEV markers (CD9, Alix and HSP70), nanoparticle tracking analysis, transmission electron microscopy, and protein and cholesterol content. The endothelial cell line HMEC-1 was used to determine the uptake of labeled sEVs and the effects of sEVs on cell viability, endothelial tube formation, endothelial cell activation, and endothelial nitric oxide expression and function. RESULTS: In MSPH women, the plasma concentration of sEVs was increased compared to that in MPH women. MSPH-sEVs were highly taken up by HMEC-1 cells and reduced angiogenic capacity and the expression and activity of eNOS without changing cell viability or endothelial activation compared to MPH-sEVs. CONCLUSION: sEVs from MSPH women impair angiogenesis and nitric oxide synthesis in endothelial cells, which could contribute to MSPH-associated endothelial dysfunction.


Subject(s)
Extracellular Vesicles , Hypercholesterolemia , Infant, Newborn , Female , Humans , Pregnancy , Hypercholesterolemia/metabolism , Endothelial Cells/metabolism , Pregnant Women , Placenta/metabolism , Nitric Oxide/metabolism , Cholesterol/metabolism , Extracellular Vesicles/metabolism
2.
Placenta ; 113: 57-66, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34053733

ABSTRACT

Preeclampsia is a pregnancy-specific syndrome characterized by a sudden increase in blood pressure accompanied by proteinuria and/or maternal multi-system damage associated to poor fetal outcome. In early-onset preeclampsia, utero-placental perfusion is altered, causing constant and progressive damage to the syncytiotrophoblast, generating syncytiotrophoblast stress. The latter leads to the detachment and release of syncytiotrophoblast fragments, anti-angiogenic factors and pro-inflammatory molecules into maternal circulation, resulting in the emergence and persistence of the characteristic symptoms of this syndrome during pregnancy. Therefore, understanding the origin and consequences of syncytiotrophoblast stress in preeclampsia is vital to develop new therapeutic alternatives, focused on reducing the burden of this syndrome. In this review, we describe five central characteristics of syncytial stress that should be targeted or prevented in order to reduce preeclampsia symptoms: histological alterations, syncytiotrophoblast damage, antiangiogenic protein export, placental deportation, and altered syncytiotrophoblast turnover. Therapeutic management of these characteristics may improve maternal and fetal outcomes.


Subject(s)
Pre-Eclampsia/physiopathology , Stress, Physiological , Trophoblasts/physiology , Animals , Female , Humans , Pre-Eclampsia/etiology , Pregnancy
3.
FASEB J ; 35(5): e21503, 2021 05.
Article in English | MEDLINE | ID: mdl-33811686

ABSTRACT

The muscle regeneration process requires a properly assembled extracellular matrix (ECM). Its homeostasis depends on the activity of different matrix-metalloproteinases (MMPs). The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) is a membrane-anchored protein that negatively regulates the activity of different MMPs. However, the role of RECK in the process of skeletal muscle differentiation, regeneration, and fibrosis has not been elucidated. Here, we show that during skeletal muscle differentiation of C2C12 myoblasts and in satellite cells on isolated muscle fibers, RECK is transiently up regulated. C2C12 myoblasts with reduced RECK levels are more prone to enter the differentiation program, showing an accelerated differentiation process. Notch-1 signaling was reduced, while p38 and AKT signaling were augmented in myoblasts with decreased RECK levels. Overexpression of RECK restores the normal differentiation process but diminished the ability to form myotubes. Transient up-regulation of RECK occurs during skeletal muscle regeneration, which was accelerated in RECK-deficient mice (Reck±). RECK, MMPs and ECM proteins augmented in chronically damaged WT muscle, a model of muscle fibrosis. In this model, RECK ± mice showed diminished fibrosis compared to WT. These results strongly suggest that RECK is acting as a potential myogenic repressor during muscle formation and regeneration, emerging as a new player in these processes, and as a potential target to treat individuals with the muscle-wasting disease.


Subject(s)
Cell Differentiation , Extracellular Matrix/metabolism , Fibrosis/prevention & control , GPI-Linked Proteins/antagonists & inhibitors , Muscle Development , Muscle, Skeletal/cytology , Regeneration , Animals , Fibrosis/metabolism , Fibrosis/pathology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...