Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomater Funct Mater ; 22: 22808000241236590, 2024.
Article in English | MEDLINE | ID: mdl-38444166

ABSTRACT

OBJECTIVE: To evaluate the antitumor and antimicrobial properties of an alginate-based membrane (ABM) loaded with bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) on clinically isolated bacteria and a pancreatic cancer cell line. MATERIAL AND METHODS: The BisBAL NP-CPC ABM was characterized using optical and scanning electron microscopy (SEM). The antimicrobial potential was measured using the disk-diffusion assay, and antibiofilm activity was determined through the live/dead assay and fluorescence microscopy. The antitumor activity was analyzed on the pancreatic cell line (Panc 03.27) using the MTT assay and live/dead assay with fluorescence microscopy. RESULTS: After a 24-h exposure (37°C, aerobic conditions), 5 µM BisBAL NP reduced the growth of K. pneumoniae by 77.9%, while 2.5 µM BisBAL NP inhibited the growth of Salmonella, E. faecalis and E. faecium by 82.9%, 82.6%, and 78%, respectively (p < 0.0001). The BisBAL NPs-CPC ABM (at a ratio of 10:1; 500 and 50 µM, respectively) inhibited the growth of all isolated bacteria, producing inhibition halos of 9.5, 11.2, 7, and 10.3 mm for K. pneumoniae, Salmonella, E. faecalis, and E. faecium, respectively, in contrast to the 6.5, 9.5, 8.5, and 9.8 mm obtained with 100 µM ceftriaxone (p < 0.0001). The BisBAL NPs-CPC ABM also reduced bacterial biofilms, with 81.4%, 74.5%, 97.1%, and 79.5% inhibition for K. pneumoniae, E. faecium, E. faecalis, and Salmonella, respectively. Furthermore, the BisBAL NPs-CPC ABM decreased Panc 03.27 cell growth by 76%, compared to 18% for drug-free ABM. GEM-ABM reduced tumoral growth by 73%. The live/dead assay confirmed that BisBAL NPs-CPC-ABM and GEM-ABM were cytotoxic for the turmoral Panc 03.27 cells. CONCLUSION: An alginate-based membrane loaded with BisBAL NP and CPC exhibits dual antimicrobial and antitumoral efficacy. Therefore, it could be applied in cancer treatment and to diminish the occurrence of surgical site infections.


Subject(s)
Anti-Infective Agents , Bismuth , Dimercaprol/analogs & derivatives , Organometallic Compounds , Cetylpyridinium/pharmacology , Anti-Infective Agents/pharmacology , Alginates/pharmacology , Klebsiella pneumoniae
2.
Foods ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37685194

ABSTRACT

The high rate of deaths around the world from noncommunicable diseases (NCDs) (70%) is a consequence of a poor diet lacking in nutrients and is linked to lifestyle and environmental conditions that together trigger predisposing factors. NCDs have increased 9.8% of public health spending worldwide, which has been increasing since 2000. Hence, international organizations such as the WHO, the Pan American Health Organization, and the Food and Agriculture Organization of the United Nations have been developing strategic plans to implement government and economic policies to strengthen programs in favor of food security and nutrition. A systematic review is presented to document an analysis of the origin and characteristics of obesity, cardiovascular disease, chronic respiratory diseases, diabetes, and cancers affecting a large part of the world's population. This review proposes a scientifically based report of functional foods including fruits, vegetables, grains, and plants, and how their bioactive compounds called nutraceuticals-when consumed as part of a diet-benefit in the prevention and treatment of NCDs from an early age. Multifactorial aspects of NCDs, such as culture and eating habits, are limitations to consider from the clinical, nutritional, and biochemical points of view of everyone who suffers from them.

3.
Curr Top Med Chem ; 22(2): 109-131, 2022.
Article in English | MEDLINE | ID: mdl-34809549

ABSTRACT

BACKGROUND: Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties. OBJECTIVE: The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV- -2. METHODS: Exhaustive literature search has been carried out on electronic databases. CONCLUSION: Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic's ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.


Subject(s)
COVID-19 Drug Treatment , Garlic , Metabolic Diseases , Humans , Immunomodulation , Plant Extracts/pharmacology , SARS-CoV-2
4.
Probiotics Antimicrob Proteins ; 10(2): 168-175, 2018 06.
Article in English | MEDLINE | ID: mdl-29103130

ABSTRACT

Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 µM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Glyceraldehyde/analogs & derivatives , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Propane/pharmacology , Virulence Factors/genetics , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Glyceraldehyde/metabolism , Glyceraldehyde/pharmacology , Helicobacter pylori/genetics , Helicobacter pylori/growth & development , Helicobacter pylori/metabolism , Humans , Limosilactobacillus reuteri/metabolism , Microbial Sensitivity Tests , Propane/metabolism , Virulence Factors/metabolism
5.
Bone Marrow Res ; 2017: 2170306, 2017.
Article in English | MEDLINE | ID: mdl-29201465

ABSTRACT

Αlpha-solanine (α-solanine) is a glycoalkaloid present in potato (Solanum tuberosum). It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α-solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α-solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs) to different concentrations of α-solanine for 24 h. The results demonstrate that nonlethal concentrations of α-solanine (2-6 µM) changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α-solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α-solanine.

6.
Int J Dent ; 2017: 2052938, 2017.
Article in English | MEDLINE | ID: mdl-28676826

ABSTRACT

Studies have proposed that Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1) sham; (2) food contaminated with Pg/Tf; (3) complete Freund's adjuvant (CFA) + Pg/Tf; and (4) CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1ß and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1ß. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation); a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation.

7.
Probiotics Antimicrob Proteins ; 7(1): 1-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25422124

ABSTRACT

Lactic acid bacteria (LAB) are well known for their beneficial effects on human health in the intestine and immune system; however, there are few studies on the impact they can generate in oral health. The aim of this study was to test and compare in vitro antimicrobial activity of L. reuteri on pathogenic bacteria involved in the formation of dental caries: S. mutans, S. gordonii, and periodontal disease: A. naeslundii and T. forsythia. Also, we determined the growth kinetics of each bacterium involved in this study. Before determining the antimicrobial action of L. reuteri on cariogenic bacteria and periodontal disease, the behavior and cell development time of each pathogenic bacterium were studied. Once the conditions for good cell growth of each of selected pathogens were established according to their metabolic requirements, maximum exponential growth was determined, this being the reference point for analyzing the development or inhibition by LAB using the Kirby Bauer method. Chlorhexidine 0.12% was positive control. L. reuteri was shown to have an inhibitory effect against S. mutans, followed by T. forsythia and S. gordonii, and a less significant effect against A. naeslundii. Regarding the effect shown by L. reuteri on the two major pathogens, we consider its potential use as a possible functional food in the prevention or treatment of oral diseases.


Subject(s)
Actinomyces/growth & development , Antibiosis , Bacteroidetes/growth & development , Limosilactobacillus reuteri/physiology , Streptococcus gordonii/growth & development , Streptococcus mutans/growth & development , Dental Caries/drug therapy , Dental Caries/microbiology , Periodontal Diseases/microbiology
8.
Biotechnol Res Int ; 2014: 654853, 2014.
Article in English | MEDLINE | ID: mdl-25530885

ABSTRACT

A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...