Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 59(12): 1571-1592.e9, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38626765

ABSTRACT

Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor , Endoplasmic Reticulum , Endosomes , Lysosomes , Neurons , Lysosomes/metabolism , Animals , Endosomes/metabolism , Amyloid beta-Protein Precursor/metabolism , Mice , Endoplasmic Reticulum/metabolism , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neurons/metabolism , Cholesterol/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Calcium/metabolism , Humans , Fibroblasts/metabolism , Signal Transduction , Proteolysis
2.
J Microsc ; 286(3): 201-219, 2022 06.
Article in English | MEDLINE | ID: mdl-35460574

ABSTRACT

Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.


This review discusses the state of the art of an emerging field called mesoscale imaging. Mesoscale imaging refers to the trend towards imaging ever-larger samples that exceed the classic microscopy domain and is also referred to as 'mesoscopic imaging'. In optical imaging, this refers to objects between the microscopic and macroscopic scale that are imaged with subcellular resolution; in practice, this implies the imaging of objects from millimetre up to cm size with µm or nm resolution. As such, the mesoscopy field spans the boundary between classic 'biological' imaging and preclinical 'biomedical' imaging, typically utilising lower magnification objective lenses with a bigger field of view. We discuss the types of samples currently imaged with examples, and highlight how this type of imaging fills the gap between microscopic and macroscopic imaging, allowing further insight into the organisation of tissues in an organism. We also discuss the challenges of imaging such large samples, from sample handling to labelling and optical phenomena that stand in the way of quantitative imaging. Finally, we put the current state of the art into context within the neighbouring fields and outline future developments, such as the use of 'phantom' test samples and artificial intelligence for image analysis that will underpin the quality of mesoscale imaging.


Subject(s)
Artificial Intelligence , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Microscopy/methods , Optical Imaging/methods , Tomography/methods
3.
Chemistry ; 27(34): 8605-8641, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33733502

ABSTRACT

Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.


Subject(s)
Membrane Proteins , Receptors, G-Protein-Coupled , Cell Membrane , Fluorescent Dyes , Ligands , Microscopy, Fluorescence
4.
Elife ; 92020 07 07.
Article in English | MEDLINE | ID: mdl-32631487

ABSTRACT

γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer's disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting 'hotspots' or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Presenilin-1/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Fibroblasts , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microscopy , Presenilin-1/metabolism
5.
Semin Cell Dev Biol ; 105: 12-26, 2020 09.
Article in English | MEDLINE | ID: mdl-32146031

ABSTRACT

γ-Secretase cleavage is essential for many biological processes and its dysregulation is linked to disease, including cancer and Alzheimer's disease. Therefore, understanding the regulation of its activity is of major importance to improve drug design and develop novel therapeutics. γ-Secretase belongs to the family of intramembrane cleaving proteases (i-CLiPs), which cleaves its substrates in a process termed regulated intramembrane proteolysis (RIP). During RIP, type-I transmembrane proteins are first cleaved within their ectodomain by a sheddase and then within their transmembrane domain by γ-secretase. γ-Secretase is composed of four integral membrane proteins that are all essential for its function: presenilin (PSEN), anterior pharynx defective 1 (APH1), nicastrin (NCT) and presenilin enhancer 2 (PEN-2). Given the presence of two PSEN homologues (PSEN1 & 2) and several APH1 isoforms, a heterogeneity exists in cellular γ-secretase complexes. It is becoming clear that each of these complexes has overlapping as well as distinct biological characteristics. This review summarizes our current knowledge on complex formation, trafficking, subcellular localization, interactors and the structure of γ-secretase, with a focus, when possible or known, on the contribution of PSEN1 and PSEN2 herein.


Subject(s)
Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Cell Biology/standards , Presenilins/metabolism , Humans
6.
Cells ; 7(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110882

ABSTRACT

Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.

SELECTION OF CITATIONS
SEARCH DETAIL
...