Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(19): 10546-10553, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-35515288

ABSTRACT

As silicon-carbon electrodes with low silicon ratio are the negative electrode foreseen by battery manufacturers for the next generation of Li-ion batteries, a great effort has to be made to improve their efficiency and decrease their cost. Pitch-based carbon/nano-silicon composites are proposed as a high performance and realistic electrode material of Li-ion battery anodes. Composites are prepared in a simple way by the pyrolysis under argon atmosphere of silicon nanoparticles, obtained by a laser pyrolysis technique, and a low cost carbon source: petroleum pitch. The effect of the size and the carbon coating of the silicon nanoparticles on the electrochemical performance in Li-ion batteries is highlighted, proving that the carbon coating enhances cycling stability. Helped by a homogeneous dispersion of silicon nanoparticles into the amorphous carbon matrix, a high coulombic efficiency (especially in the first cycle) and a high stability over cycling is observed (over 1100 mA h g-1 after 100 cycles at relatively high current density 716 mA g-1 for Si based electrodes), which are superior to pitch-based carbon/silicon composites found in literature. This simple synthesis method may be extrapolated to other electrode active materials.

2.
Chemistry ; 24(19): 4982-4990, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29405463

ABSTRACT

Mesoporous TiO2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO2 nanocomposites and their TiO2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m2 g-1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO2 nanocomposites and bare TiO2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...