Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(34): 41141-41150, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37606065

ABSTRACT

Efficient and dynamic light manipulation at small scale is highly desirable for many photonics applications. Active optical metasurfaces represent a useful way of achieving this due to their creative design potential, compact footprint, and low power consumption, paving the way toward the realization of chip-scale photonic devices with tunable optical functionality on demand. Here, we demonstrate a dynamically tunable, dual-function metasurface based on dielectric resonances in vanadium dioxide that is capable of independent active amplitude and phase control without the use of mechanical parts. Significant developments in the nanofabrication of vanadium dioxide have been shown to enable this metasurface. Gradual thermal control of the metasurface yields a computationally predicted continuously tuned amplitude modulation of 19 dB with negligible phase modulation and a continuously tuned phase modulation of 228° with negligible amplitude modulation, both at near-infrared wavelengths. Experimentally, a maximum continuously tuned amplitude modulation of 9.6 dB and phase modulation of 120° are shown, along with demonstration of stable intermediate states and repeated modulation without degradation. Reprogrammable optical functionality can thus be achieved in precisely engineered nanoantenna arrays for adaptive modulation of amplitude and phase of light for applications such as tunable holograms, lenses, and beam deflectors.

2.
ACS Nano ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595218

ABSTRACT

Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 µL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.

3.
ACS Appl Mater Interfaces ; 14(21): 24281-24289, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35594152

ABSTRACT

The deployment of two-dimensional (2D) materials for solar energy conversion requires scalable large-area devices. Here, we present the design, modeling, fabrication, and characterization of monolayer MoS2-based lateral Schottky-junction photovoltaic (PV) devices grown by using chemical vapor deposition (CVD). The device design consists of asymmetric Ti and Pt metal contacts with a work function offset to enable charge separation. These early stage devices show repeatable performance under 1 sun illumination, with VOC of 160 mV, JSC of 0.01 mA/cm2, power conversion efficiency of 0.0005%, and specific power of 1.58 kW/kg. An optoelectronic model for this device is developed and validated with experimental results. This model is used to understand loss mechanisms and project optimized device designs. The model predicts that a 2D PV device with ∼70 kW/kg of specific power can be achieved with minimum optimization to the current devices. By increasing the thickness of the absorber layer, we can achieve even higher performance devices. Finally, a 25 mm2 area solar cell made with a 0.65 nm thick MoS2 monolayer is demonstrated, showing VOC of 210 mV under 1 sun illumination. This is the first demonstration of a large-area PV device made with CVD-grown scalable 2D materials.

4.
ACS Appl Nano Mater ; 5(3): 3983-3991, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35372799

ABSTRACT

Biomarker detection and bulk refractive index sensing are important across multiple industries ranging from early medical diagnosis to chemical process quality control. The bulky size, high cost, and complex architecture of existing refractive index and biomarker sensing technologies limit their use to highly skilled environments like hospitals, large food processing plants, and research labs. Here, we demonstrate a compact and inexpensive refractive index sensor based on resonant dielectric photonic nanoantenna arrays or metasurfaces. These dielectric resonances support Mie dipole and asymmetric resonances that shift with changes in their external environment. A single-wavelength transmission measurement in a portable (<250 in.3), low-cost (<$4000) sensor shows sensitivity to 1.9 × 10-6 change in the fluid refractive index without the use of a spectrometer or other complex optics. Our sensor assembly allows for measurements using multiple metasurfaces with identical resonances or varying resonance types for enhanced diagnostics on the same chip. Furthermore, a 10 kDa culture filtrate peptide CFP-10, a marker for human tuberculosis, is detected with our sensor with 10 pM resolution. This system has the potential to enable facile, fast, and highly sensitive measurements with adequate limits of detection for personalized biomedical diagnoses.

5.
Nanotechnology ; 29(31): 315401, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-29737306

ABSTRACT

This work reports a new technique for scalable and low-temperature processing of nanostructured TiO2 thin films, allowing for practical manufacturing of TiO2-based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO2/graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm-2) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO2 while offering the distinct advantages of scalable manufacturing, low-temperature processing, simultaneous bilayer fabrication, and in situ formation of removable carbon nanocomposites.

6.
Opt Express ; 19(16): 14990-8, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21934860

ABSTRACT

All-semiconductor, highly anisotropic metamaterials provide a straightforward path to negative refraction in the mid-infrared. However, their usefulness in applications is restricted by strong frequency dispersion and limited spectral bandwidth. In this work, we show that by stacking multiple metamaterials of varying thickness and doping into one compound metamaterial, bandwidth is increased by 27% over a single-stack metamaterial, and dispersion is reduced.


Subject(s)
Optics and Photonics , Anisotropy , Infrared Rays , Light , Materials Testing , Models, Statistical , Refractometry/methods , Scattering, Radiation , Semiconductors , X-Ray Diffraction
7.
Rev Sci Instrum ; 81(6): 063102, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20590220

ABSTRACT

A new instrument has been constructed that couples a supersonic expansion source to a continuous wave cavity ringdown spectrometer using a Fabry-Perot quantum cascade laser (QCL). The purpose of the instrument is to enable the acquisition of a cold, rotationally resolved gas phase spectrum of buckminsterfullerene (C(60)). As a first test of the system, high resolution spectra of the nu(8) vibrational band of CH(2)Br(2) have been acquired at approximately 1197 cm(-1). To our knowledge, this is the first time that a vibrational band not previously recorded with rotational resolution has been acquired with a QCL-based ringdown spectrometer. 62 transitions of the three isotopologues of CH(2)Br(2) were assigned and fit to effective Hamiltonians with a standard deviation of 14 MHz, which is smaller than the laser frequency step size. The spectra have a noise equivalent absorption coefficient of 1.4 x 10(-8) cm(-1). Spectral simulations of the band indicate that the supersonic source produces rotationally cold (approximately 7 K) molecules.

8.
Opt Express ; 14(1): 279-90, 2006 Jan 09.
Article in English | MEDLINE | ID: mdl-19503341

ABSTRACT

Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...