Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 79(3): 675-83, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16832824

ABSTRACT

Periodontitis are bacterium-driven inflammatory diseases that destroy tooth-supporting tissues whose complete restoration is not currently possible. RGTA, a new class of agents, have this capacity in an animal model. Periodontitis was induced in hamsters and, starting 8 weeks later, injected RG1503, a glycosaminoglycan synthesized from a 40 kDa dextran behaving like a heparan sulfate mimetic (1.5 mg kg(-1) w(-1)) or saline for 8 weeks. The three periodontium compartments were evaluated by immunohistochemistry and morphometry. The gingival extracellular matrix disorganized by inflammation was restoring under treatment. The collagen network was repaired and resumed its previous organization. Fibrillin-1 expression was restored so that the elastic network rebuilt at a distance from the pocket and began to reconstruct near the pocket. Apoptotic cell numbers were decreased in the pocket epithelium, and more so in the infiltrated connective tissue. The continuity and the thickness of the basement membrane were restored and testified normalization of epithelium connective tissue interaction. The amount of alveolar bone increased around the first molar, and the interradicular bone was rebuilt. The root cementum was thickened and the number of proliferating cells in the periodontal ligament was increased close to the cementum. RG1503 treatment induces potent anabolic reactions in the extracellular matrices of the different tissues of the periodontium and recruitment of progenitors. In particular, the cell proliferation close to the root surface suggests the reformation of a functional attachment apparatus. These results demonstrate that RG1503 reverses the degenerative changes induced by inflammation and favors the conditions of a regenerative process. Thus, RGTA, a known matrix component mimetic and protector, may be considered as a new therapeutic tool to regenerate the tissues destroyed by periodontitis.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Glycosaminoglycans/chemistry , Glycosaminoglycans/therapeutic use , Periodontitis/drug therapy , Animals , Apoptosis/drug effects , Cricetinae , Gingivitis/drug therapy , Jaw/drug effects
2.
FASEB J ; 17(6): 644-51, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12665477

ABSTRACT

Periodontitis are diseases of the supportive tissues of the teeth provoked by bacteria and characterized by gingival inflammation and bone destruction. We have developed a new strategy to repair tissues by administrating agents (RGTA) that mimic heparan sulfates by protecting selectively some of the growth factors naturally present within the injured tissue and interfering with inflammation. After periodontitis induction in hamsters, the animals were left untreated or received weekly i.m. injections of RGTA1507 at a dose of 100 microg/kg, 400 microg/kg, 1.5 mg/kg, or 15 mg/kg for 4 wk. RGTA treatment significantly reduced gingival tissue inflammation, thickened the pocket epithelium by increasing cell proliferation, and enhanced collagen accumulation in the gingiva. A marked reduction in bone loss was observed, resulting from depression of osteoclasia and robust stimulation of bone formation at the dose of 1.5 mg/kg. RGTA treatment for 8 wk at this dose reversed macroscopic bone loss, sharply contrasting with the extensive bone destruction in the untreated animals. RGTA treatment decreased gelatinase A (MMP-2) and B (MMP-9) pro-forms in gingival tissues. Our data indicate that a 4 wk treatment dose-dependently attenuated gingival and bone manifestations of the disease, whereas a longer treatment restored alveolar bone close to controls. By modulating and coordinating host responses, RGTA has unique therapeutic properties and is a promising candidate for the treatment of human periodontitis.


Subject(s)
Dextrans/therapeutic use , Periodontitis/drug therapy , Animals , Bone Regeneration/drug effects , Cricetinae , Dextrans/administration & dosage , Dextrans/chemistry , Dose-Response Relationship, Drug , Enzyme Precursors/drug effects , Enzyme Precursors/metabolism , Gingiva/drug effects , Gingiva/metabolism , Gingiva/pathology , Male , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mesocricetus , Periodontitis/enzymology , Periodontitis/pathology
3.
J Biol Chem ; 275(38): 29383-90, 2000 Sep 22.
Article in English | MEDLINE | ID: mdl-10889187

ABSTRACT

Some synthetic dextran derivatives that mimic the action of heparin/heparan sulfate were shown to promote in vivo tissue repair when added alone to wounds. These biofunctional mimetics were therefore designated as "regenerating agents" in regard to their in vivo properties. In vitro, these biopolymers were able to protect various heparin-binding growth factors against proteolytic degradation as well as to inhibit the enzymatic activity of neutrophil elastase. In the present work, different dextran derivatives were tested for their capacity to inhibit the enzymatic activity of human plasmin. We show that dextran containing carboxymethyl, sulfate as well as benzylamide groups (RG1192 compound), was the most efficient inhibitor of plasmin amidolytic activity. The inhibition of plasmin by RG1192 can be classified as tight binding hyperbolic noncompetitive. One molecule of RG1192 bound 20 molecules of plasmin with a K(i) of 2.8 x 10(-8) m. Analysis with an optical biosensor confirmed the high affinity of RG1192 for plasmin and revealed that this polymer equally binds plasminogen with a similar affinity (K(d) = 3 x 10(-8) m). Competitive experiments carried out with 6-aminohexanoic acid and kringle proteolytic fragments identified the lysine-binding site domains of plasmin as the RG1192 binding sites. In addition, RG1192 blocked the generation of plasmin from Glu-plasminogen and inhibited the plasmin-mediated proteolysis of fibronectin and laminin. Data from the present in vitro investigation thus indicated that specific dextran derivatives can contribute to the regulation of plasmin activity by impeding the plasmin generation, as a result of their binding to plasminogen and also by directly affecting the catalytic activity of the enzyme.


Subject(s)
Dextrans/chemistry , Dextrans/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fibrinolysin/antagonists & inhibitors , Humans , Structure-Activity Relationship , Substrate Specificity
4.
J Biomed Mater Res ; 42(2): 286-94, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9773825

ABSTRACT

We developed regenerating agents (RGTAs) corresponding to polysaccharides derived from dextran and containing defined amounts of carboxymethyl (CM), carboxymethyl sulfate (CMS), carboxymethyl benzylamide (CMB), or carboxymethyl benzylamide sulfate (CMBS) groups with varying degrees of substitution. These compounds mimicked some effects of heparin on smooth muscle cell (SMC) proliferation and promoted in vivo tissue remodeling. We demonstrated that only RGTAs containing both CM and sulfate groups decreased SMC proliferation, in correlation with increased sulfation level. This effect was amplified by the presence of benzylamide. Independent of this activity on cell proliferation (i.e., with postconfluent cells), RGTAs modulated collagen biosynthesis by SMCs. On the one hand, CMBS more than CMS RGTAs induced a decrease of collagen III synthesis at the level of mRNA steady state and protein production. On the other hand, CMS to a greater extent than CMBS RGTAs increased both collagen V mRNA and protein production. In addition, only benzylamide-containing RGTAs increased accumulation of collagen I and III in the cell layer. In conclusion, RGTA bioactivities required the presence of CM functions, increased with the sulfation level, and varied with benzylamide substitution. RGTAs that modulate cell proliferation and collagen biosynthesis by differential mechanisms may represent potential antifibrotic agents.


Subject(s)
Biocompatible Materials , Collagen/biosynthesis , Dextrans/chemistry , Muscle, Smooth, Vascular/metabolism , Animals , Animals, Newborn , Aorta , Cell Division , Cells, Cultured , Collagen/chemistry , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...