Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 31(6): 1384-97, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15259642

ABSTRACT

Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of approximately 2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on "real time." In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera.


Subject(s)
Gamma Cameras , Biophysical Phenomena , Biophysics , Electronics, Medical , Equipment Design , Humans , Hyperthyroidism/diagnostic imaging , Radionuclide Imaging , Thyroid Nodule/diagnostic imaging
2.
Magn Reson Med ; 47(1): 105-14, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11754449

ABSTRACT

MRI of the lungs using hyperpolarized helium-3 ((3)He) allows the determination of intrapulmonary oxygen partial pressures (p(O2)). The need to separate competing processes of signal loss has hitherto required two different imaging series during two different breathing maneuvers. In this work, a new imaging strategy to measure p(O2) by a single series of consecutive scans is presented. The feasibility of the method is demonstrated in three healthy human volunteers. Maps and histograms of intrapulmonary p(O2) are calculated. Changes in the oxygen concentration of the inhaled gas mixture are well reproduced in the histograms. Monte Carlo (MC) simulations of the temporal evolution of (3)He hyperpolarization within the lungs were performed to evaluate the accuracy of this measurement technique, and its limitations.


Subject(s)
Lung/anatomy & histology , Magnetic Resonance Imaging , Computer Simulation , Helium , Humans , Image Processing, Computer-Assisted , Isotopes , Monte Carlo Method , Oxygen , Partial Pressure , Pulmonary Ventilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...