Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(51): 26001-11, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181250

ABSTRACT

This work describes the use of mesoporous SBA-15 silicas as hard templates for the size-controlled synthesis of oxide nanoparticles, with the pores acting as nanoscale reactors. This fundamental work is mainly aimed at understanding unresolved issues concerning the occurrence and size dependence of phase transitions in oxide nanocrystals. Aqueous solutions of Fe(NO3)3*9H2O are deposited inside the pores of SBA-15 silicas with mesopore diameters of 4.3, 6.6, and 9.5 nm. By calcination, the nitrate salt transforms into FeOx oxides. The XRD peaks of nanocrystals are broad and overlapping, resulting in ambiguities attributed to a given allotropic variety of Fe2O3 (alpha, epsilon, or gamma) or Fe3O4. The association of XRD, SAED, and Raman information is necessary to solve these ambiguities. The metastable gamma-Fe2O3 variety is selectively formed at low Fe/Si atomic ratio (ca. 0.20) and when a low calcination temperature is used (773 or 873 K followed by quenching to room temperature once the targeted temperature is reached). The small size dispersion of the patterned nanoparticles, suggested on a local scale by TEM, is confirmed statistically by magnetic measurements. The nanoparticles have a superparamagnetic behavior around room temperature. Their magnetic moments (from 220 to 370 mB), their sizes (from 4.0 to 4.8 nm), and their blocking temperatures (from 36 to 58 K) increase with the silica template mesopore diameter. Their magnetic properties are compared to those of standard gamma-Fe2O3 nanoparticles of similar size, obtained by coprecipitation in water and stabilized by a citrate coating.

2.
J Am Chem Soc ; 123(50): 12536-43, 2001 Dec 19.
Article in English | MEDLINE | ID: mdl-11741417

ABSTRACT

We synthesized a series of CoFe Prussian blue analogues along which we tuned the amount of cesium cations inserted in the tetrahedral sites of the structure. Structure and electronic structure have been investigated, combining XANES, infrared spectroscopy, powder X-ray diffraction experiments, and magnetization measurements. The change of the magnetization induced by light along the series shows that the efficiency of the photoinduced magnetization, evidenced a few years ago in similar compounds by Hashimoto et al. (Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704-705; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Electrochem. Soc. 1997, 144, L11-L13; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Phys. Chem. B 1997, 101, 3903-3905; Einaga, Y.; Ohkoshi, S.-I.; Sato, O.; Fujishima, A.; Hashimoto, K. Chem. Lett. 1998, 585-586; and Sato, O.; Einaga, Y.; Fujishima, A.; Hashimoto, K. Inorg. Chem. 1999, 38, 4405-4412), depends on a compromise between the number of excitable diamagnetic pairs and the amount of [Fe(CN)6] vacancies giving the network flexibility. Besides the efficiency of the photoinduced process, the amount of [Fe(CN)6] vacancies also controls a thermally induced electron transfer.

3.
J Am Chem Soc ; 123(50): 12544-6, 2001 Dec 19.
Article in English | MEDLINE | ID: mdl-11741418

ABSTRACT

In Part 2 of this work, the electronic and local structure of the photoinduced metastable magnetic state of the Prussian blue analogue Rb1.8Co4[Fe(CN)6]3.3-13H2O were characterized. To determine directly the relative orientation of the magnetic moments of Co(II) and Fe(III) ions in the metastable state, and the nature of the exchange interaction between them, we performed X-ray magnetic circular dichroism (XMCD) experiments at the cobalt and iron K edges. We present the first direct experimental evidence of the antiferromagnetic interaction between the cobalt and the iron ions, leading to the ferrimagnetism of the photoinduced metastable state.

SELECTION OF CITATIONS
SEARCH DETAIL
...