Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Mater ; 35(17): 6762-6770, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37719034

ABSTRACT

Carbon nitrides have recently come into focus for photo- and thermal catalysis, both as support materials for metal nanoparticles as well as photocatalysts themselves. While many approaches for the synthesis of three-dimensional carbon nitride materials are available, only top-down approaches by exfoliation of powders lead to thin-film flakes of this inherently two-dimensional material. Here, we describe an in situ on-surface synthesis of monolayer 2D carbon nitride films as a first step toward precise combination with other 2D materials. Starting with a single monomer precursor, we show that 2,5,8-triazido-s-heptazine can be evaporated intact, deposited on a single crystalline Au(111) or graphite support, and activated via azide decomposition and subsequent coupling to form a covalent polyheptazine network. We demonstrate that the activation can occur in three pathways, via electrons (X-ray illumination), via photons (UV illumination), and thermally. Our work paves the way to coat materials with extended carbon nitride networks that are, as we show, stable under ambient conditions.

2.
ACS Catal ; 13(9): 6203-6213, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37180966

ABSTRACT

The metastability of supported metal nanoparticles limits their application in heterogeneous catalysis at elevated temperatures due to their tendency to sinter. One strategy to overcome these thermodynamic limits on reducible oxide supports is encapsulation via strong metal-support interaction (SMSI). While annealing-induced encapsulation is a well-explored phenomenon for extended nanoparticles, it is as yet unknown whether the same mechanisms hold for subnanometer clusters, where concomitant sintering and alloying might play a significant role. In this article, we explore the encapsulation and stability of size-selected Pt5, Pt10, and Pt19 clusters deposited on Fe3O4(001). In a multimodal approach using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM), we demonstrate that SMSI indeed leads to the formation of a defective, FeO-like conglomerate encapsulating the clusters. By stepwise annealing up to 1023 K, we observe the succession of encapsulation, cluster coalescence, and Ostwald ripening, resulting in square-shaped crystalline Pt particles, independent of the initial cluster size. The respective sintering onset temperatures scale with the cluster footprint and thus size. Remarkably, while small encapsulated clusters can still diffuse as a whole, atom detachment and thus Ostwald ripening are successfully suppressed up to 823 K, i.e., 200 K above the Hüttig temperature that indicates the thermodynamic stability limit.

3.
Science ; 370(6519): 912, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33214266
4.
Nanotechnology ; 31(50): 505302, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33021238

ABSTRACT

We have studied the capability of He+ focused ion beam (He+-FIB) patterning to fabricate defect arrays on the Si/SiO2/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized 'blister' region of cylindrical symmetry results upon exposing the surface to the stationary focused He+ beam. The topography of the amorphized region depends strongly on the ion dose, DS , (ranging from 103 to 107ions/spot) with craters and holes observed at higher doses. Furthermore, the surface morphology depends on the distance between adjacent irradiated spots, LS . Increasing the dose leads to (enhanced) subsurface amorphization and a local height increase relative to the unexposed regions. At the highest areal ion dose, the average height of a patterned area also increases as ∼1/LS . Correspondingly, in optical micrographs, the µm2-sized patterned surface regions change appearance. These phenomena can be explained by implantation of the He+ ions into the subsurface layers, formation of helium nanobubbles, expansion and modification of the dielectric constant of the patterned material. The corresponding modifications of the terminating graphene monolayer have been monitored by micro Raman imaging. At low ion doses, DS , the graphene becomes modified by carbon atom defects which perturb the 2D lattice (as indicated by increasing D/G Raman mode ratio). Additional x-ray photoionization spectroscopy (XPS) measurements allow us to infer that for moderate ion doses, scattering of He+ ions by the subsurface results in the oxidation of the graphene network. For largest doses and smallest LS values, the He+ beam activates extensive Si/SiO2/C bond rearrangement and a multicomponent material possibly comprising SiC and silicon oxycarbides, SiOC, is observed. We also infer parameter ranges for He+-FIB patterning defect arrays of potential use for pinning transition metal nanoparticles in model studies of heterogeneous catalysis.

5.
Phys Chem Chem Phys ; 22(16): 8336-8343, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32255111

ABSTRACT

We present surface X-ray diffraction and fast scanning tunneling microscopy results to elucidate the nature of the surface phase transition on magnetite (001) from a reconstructed to a non-reconstructed surface around 720 K. In situ surface X-ray diffraction at a temperature above the phase transition, at which long-range order is lost, gives evidence that the subsurface cation vacancy reconstruction still exists as a local structural motif, in line with the characteristics of a 2D second-order phase transition. Fast scanning tunneling microscopy results across the phase transition underpin the hypothesis that the reconstruction lifting is initiated by surplus Fe ions occupying subsurface octahedral vacancies. The reversible near-surface iron enrichment and reduction of the surface to stoichiometric composition is further confirmed by in situ low-energy ion scattering, as well as ultraviolet and X-ray photoemission results.

6.
Ultramicroscopy ; 205: 49-56, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31234102

ABSTRACT

Time resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g. surface diffusion, film growth, self-assembly and chemical reactions) cannot be thoroughly addressed by conventional SPMs. To overcome this limitation, several years ago we developed a first prototype of the FAST module, an add-on instrument capable of driving a commercial scanning tunneling microscope (STM) at and beyond video rate frequencies. Here we report on a fully redesigned version of the FAST module, featuring improved performance and user experience, which can be used both with STMs and atomic force microscopes (AFMs), and offers additional capabilities such as an atom tracking mode. All the new features of the FAST module, including portability between different commercial instruments, are described in detail and practically demonstrated.

7.
Nat Commun ; 7: 10700, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911248

ABSTRACT

Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm(-2) irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 10(2) µm(2), an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

8.
Nano Lett ; 14(8): 4486-92, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25115337

ABSTRACT

Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication.


Subject(s)
Graphite/chemistry , Imides/chemistry , Membranes, Artificial , Nanopores , Naphthalenes/chemistry , Triazines/chemistry
9.
Nano Lett ; 12(11): 5907-12, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23057656

ABSTRACT

Soft-landing of size-selected Pd(n) (n ≤ 20) nanoclusters on a Moiré-patterned surface of graphene adsorbed on Ru(0001) leads to controlled formation of a truly monodisperse cluster-assembled material. Combined scanning tunneling microscopy and first-principles calculations allow identification of selective adsorption sites, characterization of size-dependent cluster isomers, and exploration of interconversion processes between isomeric forms that manifestly influence cluster surface mobility. Surface-assembled cluster superstructures may be employed in nanocatalytic applications, as well as in fundamental investigations of physical factors controlling bonding, structure, isomerism, and surface mobilities of surface-supported clusters.

10.
Rev Sci Instrum ; 82(5): 053702, 2011 May.
Article in English | MEDLINE | ID: mdl-21639502

ABSTRACT

We present the design and the performance of the FAST (Fast Acquisition of SPM Timeseries) module, an add-on instrument that can drive commercial scanning probe microscopes (SPM) at and beyond video rate image frequencies. In the design of this module, we adopted and integrated several technical solutions previously proposed by different groups in order to overcome the problems encountered when driving SPMs at high scanning frequencies. The fast probe motion control and signal acquisition are implemented in a way that is totally transparent to the existing control electronics, allowing the user to switch immediately and seamlessly to the fast scanning mode when imaging in the conventional slow mode. The unit provides a completely non-invasive, fast scanning upgrade to common SPM instruments that are not specifically designed for high speed scanning. To test its performance, we used this module to drive a commercial scanning tunneling microscope (STM) system in a quasi-constant height mode to frame rates of 100 Hz and above, demonstrating extremely stable and high resolution imaging capabilities. The module is extremely versatile and its application is not limited to STM setups but can, in principle, be generalized to any scanning probe instrument.

11.
J Am Chem Soc ; 131(9): 3253-9, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-19173644

ABSTRACT

By means of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we characterize at the single-atom level the mechanism of the water formation reaction on the (10 x 2)-O/Rh(110) surface, a prototype of a one-dimensional (1D) oxide where the lattice expansion and the segmentation of the surface play a fundamental role. When the reaction is imaged in the 238-263 K temperature range (35 s/image acquisition time), a peculiar comblike propagation mechanism for the reaction front is found. Fast STM measurements (33 ms/image) prove that this mechanism holds also at room temperature, being therefore an intrinsic characteristic of the reaction on the 1D oxide. DFT calculations explain the observed behavior as due to the interplay between the lattice expansion in the initial surface and its relaxation during the reaction that leads to varying configurations for the reactants. At low temperatures, the reaction produces, in its final stages, a low-coverage, ordered patterning of the surface with residual oxygen. The pattern formation is related to the segmentation of the oxide phase.

12.
J Am Chem Soc ; 130(6): 2108-13, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18189402

ABSTRACT

Metal-organic coordination interactions are prime candidates for the formation of self-assembled, nanometer-scale periodic networks with room-temperature structural stability. We present X-ray photoelectron spectroscopy measurements of such networks at the Cu(100) surface which provide clear evidence for genuine metal-organic coordination. This is evident as binding energy shifts in the O 1s and Fe 3p photoelectron peaks, corresponding to O and Fe atoms involved in the coordination. Our results provide the first clear evidence for charge-transfer coordination in metal-organic networks at surfaces and demonstrate a well-defined oxidation state for the coordinated Fe ions.

13.
Langmuir ; 24(3): 767-72, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18161995

ABSTRACT

We studied the molecular orientation of pentacene monolayer phases on the Au(110) surface by means of near-edge X-ray absorption spectroscopy at the carbon K-shell and scanning tunneling microscopy. The highest coverage phase, displaying a (6 x 8) symmetry, is found to be formed by two types of differently oriented molecules mimicking regular arrays of nanorails. Flat-lying molecules, aligned side-by-side with the long molecular axis along the [001] direction, form long crosstie chains extending in the [110] direction. In between the adjacent flat chains, additional molecules, tilted by 90 degrees around their molecular axis, line up head-to-tail into rails extending along [110]. These molecules are very weakly hybridized with the substrate, as indicated by their lowest unoccupied molecular orbitals, which closely resemble those of the free molecule. The nanorail structure is found to be stable up to 420 K in vacuum and to also remain in place after exposure to air, thus being a template well suited for further self-assembly of organic heterostructures. The tilted quasi-free molecules open the possibility for an optimal lateral pi-coupling to other molecules or molecular assemblies.

14.
J Am Chem Soc ; 127(32): 11454-9, 2005 Aug 17.
Article in English | MEDLINE | ID: mdl-16089475

ABSTRACT

By means of scanning tunneling microscopy and density functional theory calculations, we studied the water formation reaction on the Rh(110) surface when exposing the (2 x 1)p2mg-O structure to molecular hydrogen, characterizing each of the structures that form on the surface during the reaction. First the reaction propagates on the surface as a wave front, removing half of the initial oxygen atoms. The remaining 0.5 monolayers of O atoms rearrange in pairs, forming a c(2 x 4) structure. Second, as the reaction proceeds, areas of an intermediate structure with c(2 x 2) symmetry appear and grow at the expense of the c(2 x 4) phase, involving all the oxygen atoms present on the surface. Afterward, the c(2 x 2) islands shrink, indicating that complete hydrogenation occurs at their edges, leaving behind a clean rhodium substrate. Two possible models for the c(2 x 2) structure, where not only the arrangement but also the chemical identity is different, are given. The first one is a mixed H + O structure, while the second one resembles the half-dissociated water layer already proposed on other metal surfaces. In both models, the high local oxygen coverage is achieved by the formation of a hexagonal network of hydrogen bonds.

15.
Science ; 309(5735): 752-5, 2005 Jul 29.
Article in English | MEDLINE | ID: mdl-16051791

ABSTRACT

The high performance of ceria (CeO2) as an oxygen buffer and active support for noble metals in catalysis relies on an efficient supply of lattice oxygen at reaction sites governed by oxygen vacancy formation. We used high-resolution scanning tunneling microscopy and density functional calculations to unravel the local structure of surface and subsurface oxygen vacancies on the (111) surface. Electrons left behind by released oxygen localize on cerium ions. Clusters of more than two vacancies exclusively expose these reduced cerium ions, primarily by including subsurface vacancies, which therefore play a crucial role in the process of vacancy cluster formation. These results have implications for our understanding of oxidation processes on reducible rare-earth oxides.

16.
J Phys Chem B ; 109(24): 11980-5, 2005 Jun 23.
Article in English | MEDLINE | ID: mdl-16852477

ABSTRACT

Using scanning tunneling microscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy, we studied the evolution of the structure and chemical state of a Rh(110) surface, modified by K adlayers and exposed to high O2 doses at elevated temperatures. We find that oxygen coadsorption on the K-covered Rh(110) leads to massive reconstruction of the Rh(110) surface. Stable reconstructed (10 x 2) and (8 x 2) segmented phases with a local coverage of more than two oxygen atoms per surface Rh atom were observed. Formation of surface oxide, which coexists with the (10 x 2) and (8 x 2) segmented adsorption phases, is evidenced at the highest O2 doses. The development of strongly reconstructed adsorption phases with oxide-like stoichiometry and surface oxide under UHV conditions is explained in terms of the stabilization of the (1 x 2) reconstruction and promotion of O2 dissociation by the K adatoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...