Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 240(1): 224-241, 2023 10.
Article in English | MEDLINE | ID: mdl-37424336

ABSTRACT

The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.


Subject(s)
Endosperm , Triticum , Endosperm/genetics , Endosperm/metabolism , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Plastids/genetics , Plastids/metabolism , Mutation/genetics
2.
Plants (Basel) ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616196

ABSTRACT

MonocotJRLs are Poaceae-specific two-domain proteins that consist of a jacalin-related lectin (JRL) and a dirigent (DIR) domain which participate in multiple developmental processes, including disease resistance. For OsJAC1, a monocotJRL from rice, it has been confirmed that constitutive expression in transgenic rice or barley plants facilitates broad-spectrum disease resistance. In this process, both domains of OsJAC1 act cooperatively, as evidenced from experiments with artificially separated JRL- or DIR-domain-containing proteins. Interestingly, these chimeric proteins did not evolve in dicotyledonous plants. Instead, proteins with a single JRL domain, multiple JRL domains or JRL domains fused to domains other than DIR domains are present. In this study, we wanted to test if the cooperative function of JRL and DIR proteins leading to pathogen resistance was conserved in the dicotyledonous plant Arabidopsis thaliana. In Arabidopsis, we identified 50 JRL and 24 DIR proteins, respectively, from which seven single-domain JRL and two single-domain DIR candidates were selected. A single-cell transient gene expression assay in barley revealed that specific combinations of the Arabidopsis JRL and DIR candidates reduced the penetration success of barley powdery mildew. Strikingly, one of these pairs, AtJAX1 and AtDIR19, is encoded by genes located next to each other on chromosome one. However, when using natural variation and analyzing Arabidopsis ecotypes that express full-length or truncated versions of AtJAX1, the presence/absence of the full-length AtJAX1 protein could not be correlated with resistance to the powdery mildew fungus Golovinomyces orontii. Furthermore, an analysis of the additional JRL and DIR candidates in a bi-fluorescence complementation assay in Nicotiana benthamiana revealed no direct interaction of these JRL/DIR pairs. Since transgenic Arabidopsis plants expressing OsJAC1-GFP also did not show increased resistance to G. orontii, it was concluded that the resistance mediated by the synergistic activities of DIR and JRL proteins is specific for members of the Poaceae, at least regarding the resistance against powdery mildew. Arabidopsis lacks the essential components of the DIR-JRL-dependent resistance pathway.

3.
Int J Mol Sci ; 18(7)2017 Jul 22.
Article in English | MEDLINE | ID: mdl-28737678

ABSTRACT

Plant lectins are proteins that reversibly bind carbohydrates and are assumed to play an important role in plant development and resistance. Through the binding of carbohydrate ligands, lectins are involved in the perception of environmental signals and their translation into phenotypical responses. These processes require down-stream signaling cascades, often mediated by interacting proteins. Fusing the respective genes of two interacting proteins can be a way to increase the efficiency of this process. Most recently, proteins containing jacalin-related lectin (JRL) domains became a subject of plant resistance responses research. A meta-data analysis of fusion proteins containing JRL domains across different kingdoms revealed diverse partner domains ranging from kinases to toxins. Among them, proteins containing a JRL domain and a dirigent domain occur exclusively within monocotyledonous plants and show an unexpected high range of family member expansion compared to other JRL-fusion proteins. Rice, wheat, and barley plants overexpressing OsJAC1, a member of this family, are resistant against important fungal pathogens. We discuss the possibility that JRL domains also function as a decoy in fusion proteins and help to alert plants of the presence of attacking pathogens.


Subject(s)
Disease Resistance , Oryza/metabolism , Plant Diseases , Plant Lectins/metabolism , Oryza/genetics , Plant Lectins/genetics , Protein Domains
4.
Mol Plant ; 9(4): 514-27, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26708413

ABSTRACT

Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we characterized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad-spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses revealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.


Subject(s)
Fungi/physiology , Oryza/metabolism , Oryza/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Amino Acid Sequence , Disease Resistance , Gene Expression Regulation, Plant , Gene Fusion , Hordeum/genetics , Hordeum/microbiology , Hordeum/physiology , Oryza/genetics , Oryza/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Protein Domains , Protein Transport , Species Specificity
5.
Microb Cell Fact ; 14: 156, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26438243

ABSTRACT

BACKGROUND: Recombinant protein production using Escherichia coli as expression host is highly efficient, however, it also induces strong host cell metabolic burden. Energy and biomass precursors are withdrawn from the host's metabolism as they are required for plasmid replication, heterologous gene expression and protein production. Rare codons in a heterologous gene may be a further drawback. This study aims to investigate the influence of particular silent codon exchanges within a heterologous gene on host cell metabolic activity. Silent mutations were introduced into the coding sequence of a model protein to introduce all synonymous arginine or leucine codons at two randomly defined positions, as well as substitutions leading to identical amino acid exchanges with different synonymous codons. The respective E. coli clones were compared during cultivation in a mineral autoinduction medium using specialized online and offline measuring techniques to quantitatively analyze effects on respiration, biomass and protein production, as well as on carbon source consumption, plasmid copy number, intracellular nucleobases and mRNA content of each clone. RESULTS: Host stain metabolic burden correlates with recombinant protein production. Upon heterologous gene expression, tremendous differences in respiration, biomass and protein production were observed. According to their different respiration activity the E. coli clones could be classified into two groups, Type A and Type B. Type A clones tended to higher product formation, Type B clones showed stronger biomass formation. Whereas codon usage and intracellular nucleobases had no influence on the Type-A-Type-B-behavior, plasmid copy number, mRNA content and carbon source consumption strongly differed between the two groups. CONCLUSIONS: Particular silent codon exchanges in a heterologous gene sequence led to differences in initial growth of Type A and Type B clones. Thus, the biomass concentration at the time point of induction varied. In consequence, not only plasmid copy number and expression levels differed between the two groups, but also the kinetics of lactose and glycerol consumption. Even though the underlying molecular mechanisms are not yet identified we observed the astonishing phenomenon that particular silent codon exchanges within a heterologous gene tremendously affect host cell metabolism and recombinant protein production. This could have great impact on codon optimization of heterologous genes, screening procedures for improved variants, and biotechnological protein production processes.


Subject(s)
Codon , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Biomass , Carbon/metabolism , Gene Dosage , Lipase/genetics , Metabolic Engineering , Metabolome , Mutagenesis, Site-Directed , Plasmids/genetics , Plasmids/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...