Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Isotopes Environ Health Stud ; 48(1): 105-17, 2012.
Article in English | MEDLINE | ID: mdl-22321257

ABSTRACT

The formation of secondary sulphate minerals such as thaumasite, ettringite and gypsum is a process causing severe damage to concrete constructions. A major key to understand the complex reactions, involving concrete deterioration is to decipher the cause of its appearance, including the sources of the involved elements. In the present study, sulphate attack on the concrete of two Austrian tunnels is investigated. The distribution of stable sulphur isotopes is successfully applied to decipher the source(s) of sulphur in the deteriorating sulphate-bearing minerals. Interestingly, δ(34)S values of sulphate in local groundwater and in the deteriorating minerals are mostly in the range from+14 to+27 ‰. These δ(34)S values match the isotope patterns of regional Permian and Triassic marine evaporites. Soot relicts from steam- and diesel-driven trains found in one of the tunnels show δ(34)S values from-3 to+5 ‰, and are therefore assumed to be of minor importance for sulphate attack on the concretes. In areas of pyrite-containing sedimentary rocks, the δ(34)S values of sulphate from damaged concrete range between-1 and+11 ‰. The latter range reflects the impact of sulphide oxidation on local groundwater sulphate.


Subject(s)
Construction Materials/analysis , Groundwater/chemistry , Sulfates/chemistry , Austria , Environmental Monitoring , Groundwater/analysis , Iron/analysis , Iron/chemistry , Mass Spectrometry , Microscopy, Electron, Scanning , Potentiometry , Powder Diffraction , Sulfates/analysis , Sulfides/analysis , Sulfides/chemistry , Sulfur Isotopes/analysis , Sulfur Isotopes/chemistry , X-Ray Diffraction
2.
Plant Physiol Biochem ; 46(1): 64-70, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18042393

ABSTRACT

Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century.


Subject(s)
Abscisic Acid/metabolism , Carbon Dioxide/metabolism , Plant Stomata/physiology , Plant Transpiration/physiology , Populus/metabolism , Viscum album/physiology , Xylem/metabolism , Abscisic Acid/chemistry , Abscisic Acid/pharmacology , Disasters , Host-Parasite Interactions/drug effects , Host-Parasite Interactions/physiology , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Transpiration/drug effects , Populus/chemistry , Populus/parasitology , Water/metabolism , Xylem/chemistry
3.
Plant Physiol Biochem ; 42(9): 739-44, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15474380

ABSTRACT

The flux of inorganic and organic nitrogen into the mistletoe Viscum album L. from the xylem sap of a deciduous (Populus x euamericana) and a coniferous host (Abies alba Mill.) was analyzed. For this purpose, a perfusion system was developed in which the xylem sap of the host was replaced by an artificial perfusion solution. With this system flux rates into the mistletoe were determined in feeding experiments either with the organic nitrogen source [1,2-13C2]glutamine at high and the inorganic nitrogen source 15NO3- at low concentration or vice versa. Glutamine influx was already saturated at the low concentration in the xylem sap and was--different from nitrate--not enhanced, when a 250-fold higher concentration was applied. Nitrate influx matched glutamine influx only at high inorganic/organic nitrogen ratios in the perfusion solution. This result indicates a preferential influx of glutamine over nitrate from the host xylem into the mistletoe at the concentrations found in the xylem sap of trees. Surprisingly, a high percentage of both N sources were accumulated in the mistletoe stem, indicating excessive N nutrition of the mistletoe leaves. Since 13C isotope signature was significantly reduced in the outflowing perfusion solution, either an upload of organic compounds from the phloem into the xylem, or an efflux of organic compounds from haustorium of mistletoe into the xylem has to be assumed. 15N isotope signatures enriched in the outflowing perfusion solution support the idea of a nitrate uptake system at the host xylem-haustorium interface, which favors the light N isotope of nitrate.


Subject(s)
Glutamine/metabolism , Mistletoe/physiology , Nitrates/metabolism , Germany , Plant Leaves/physiology , Plant Stems/physiology
4.
Tree Physiol ; 24(6): 639-50, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15059764

ABSTRACT

In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of both hosts and mistletoe contained large, but similar amounts of total organic nitrogen in low molecular weight amino compounds (TONLW). Nevertheless, individual amino compounds accumulated in the xylem sap of mistletoe relative to the host xylem sap, indicating selective uptake. In the xylem sap of Populus, major amino compounds (asparagine (Asn) and glutamine (Gln)) and the bulk parameters, TONLW and proteinogenic amino acids, showed significant seasonal variation. In Abies and in mistletoe on either host, variation of amino compounds in xylem sap was largely explained by inter-annual differences, not by seasonal variation. In both hosts, TONLW in the xylem sap was dominated by Gln. There was a steady decrease in relative abundance of Gln from the host xylem sap to the mistletoe xylem sap and to the stems and leaves of mistletoe. Simultaneously, the abundance of arginine (Arg) increased. Arginine was the predominant amino compound in the stems and leaves of mistletoe, occurring at concentrations previously observed only in leaves of trees exposed to excess nitrogen. We conclude that Gln (2 mol N mol(-1)) delivered by the host xylem sap is converted, in mistletoe, to Arg (4 mol N mol(-1)) and that the organic carbon liberated from Gln contributes significantly to the parasite's heterotrophic carbon gain. Statistical analyses of the data support this conclusion. Accumulation of Arg in mistletoe is an indication of excess N supply as a result of the uptake of amino compounds from the host xylem sap and a lack of phloem uploading.


Subject(s)
Abies/parasitology , Populus/parasitology , Trees/parasitology , Viscum/physiology , Abies/chemistry , Abies/physiology , Amino Acids/analysis , Plant Leaves/chemistry , Plant Leaves/physiology , Plant Stems/chemistry , Plant Stems/physiology , Populus/chemistry , Populus/physiology , Seasons , Trees/chemistry , Trees/physiology , Viscum/chemistry
5.
Physiol Plant ; 120(2): 212-219, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15032855

ABSTRACT

In the present field study we analysed the seasonal pattern of carbohydrate composition and contents in the xylem sap of Viscum album and the xylem sap of a deciduous (Populusxeuramericana) and a coniferous (Abies alba) host tree species. The results were compared with the soluble carbohydrate composition and contents of mistletoe tissues. On both hosts significant amounts of glucose, fructose, and sucrose were found in the xylem sap of Viscum throughout the seasons. The general seasonal pattern of sugar contents, i.e. high concentrations in spring and lower concentrations in other seasons on Populus, and intermediate concentrations throughout the year on Abies, largely reflected the xylem sap carbohydrate composition and contents of the respective host. These observations provide indirect evidence for carbohydrate flux from the xylem sap of the host into the mistletoe. However, in both hosts xylem sap seems to be deviated into the mistletoe without specific control of carbohydrate flux. Differences observed between the seasonal pattern of xylem sap carbohydrate concentrations in Viscum on Populus and Abies may originate from the different time of leaf development of these species. A clear-cut seasonal pattern of soluble carbohydrates was not observed in the leaves of Viscum on both hosts. Still soluble carbohydrates seem to be reallocated from the senescing to the newly developed leaves of Viscum indicating that the seasonal requirement of carbohydrate for growth and development can only completely be met by carbohydrate acquisition from the host and their own photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...