Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 41(3): 276-83, 1998 Jan 29.
Article in English | MEDLINE | ID: mdl-9464358

ABSTRACT

A nonionic RNA analogue of the sequence r(USO2GSO2ASO2C) has been synthesized where each bridging phosphate diester is replaced by a dimethylene sulfone unit (rSNA). The rSNA was synthesized in solution from 3',5'-bishomo-beta-ribonucleoside derivatives as building blocks. Full experimental procedures are provided, and the product and all synthetic intermediates are fully characterized. The tetramer is nonionic but highly dipolar due to multiple hydrogen bonding opportunities. It is freely soluble in water only at higher pH's, permitting it to be radiolabeled by exchange of the acidic protons alpha to the sulfones with tritiated water. The tritiated molecule was administered intravenously into the tail vein (2.6 mg/kg) of mice, and its distribution was monitored over 48 h. The rSNA was widely distributed in the biological tissues, including the brain, and excreted in both the feces and the urine. The accumulation of radioactivity was significantly higher in liver and kidney than in other tissues. Radiolabel was recovered from the urine, analyzed by HPLC, and shown to be intact oligonucleotide sulfone. This is the first bioavailability study on a short nonionic oligonucleotide analogue, a class of molecules with potential biomedical applications.


Subject(s)
Oligonucleotides/chemical synthesis , Peptides/pharmacokinetics , Animals , Magnetic Resonance Spectroscopy , Mice , Molecular Mimicry , Molecular Structure , Oligonucleotides/pharmacokinetics , Spectrometry, Mass, Fast Atom Bombardment , Tissue Distribution
2.
Pure Appl Chem ; 70(2): 263-6, 1998 Feb.
Article in English | MEDLINE | ID: mdl-11542721

ABSTRACT

A research program has applied the tools of synthetic organic chemistry to systematically modify the structure of DNA and RNA oligonucleotides to learn more about the chemical principles underlying their ability to store and transmit genetic information. Oligonucleotides (as opposed to nucleosides) have long been overlooked by synthetic organic chemists as targets for structural modification. Synthetic chemistry has now yielded oligonucleotides with 12 replicatable letters, modified backbones, and new insight into why Nature chose the oligonucleotide structures that she did.


Subject(s)
DNA/chemistry , Molecular Biology/trends , Nucleic Acids/chemistry , Oligonucleotides/chemical synthesis , Catalysis , Codon , Molecular Structure , Nucleic Acids/chemical synthesis , Oligonucleotides/chemistry , Phosphates/chemistry , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...