Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1411251, 2024.
Article in English | MEDLINE | ID: mdl-38903784

ABSTRACT

The large amount of various types of heavy metals in animal manure applied to agricultural field has caused severe threat to the ecosystems of soil environments. In this study, the effect of thermal treatment of illite on the bioavailability of copper (Cu) and zinc (Zn) in the aerobic composting of pig manure with corn straw biochar was investigated. The objectives of this study were to characterize the variations in the bioavailability of Cu and Zn in the aerobic composting of pig manure added with illite treated with high temperatures and to identify the relatively dominant microbes involved in the formation of humus and passivation of heavy metals in pig manure composting based on 16S rRNA high-throughput sequencing analysis. The results showed that in comparison with the raw materials of pig manure, the bioavailability of Zn and Cu in the control and three experimental composting groups, i.e., group I (with untreated illite), group I-2 (with illite treated under 200°C), and group I-5 (with illite treated under 500°C), was decreased by 27.66 and 71.54%, 47.05 and 79.80%, 51.56 and 81.93%, and 58.15 and 86.60%, respectively. The results of 16S rRNA sequencing analysis revealed that in the I-5 group, the highest relative abundance was detected in Fermentimonas, which was associated with the degradation of glucose and fructose, and the increased relative abundances were revealed in the microbes associated with the formation of humus, which chelated with Zn and Cu to ultimately reduce the bioavailability of heavy metals and their biotoxicity in the compost. This study provided strong experimental evidence to support the application of illite in pig manure composting and novel insights into the selection of appropriate additives (i.e., illite) to promote humification and passivation of different heavy metals in pig manure composting.

2.
Microorganisms ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930441

ABSTRACT

The lack of efficient ways to dispose of lignocellulosic agricultural residues is a serious environmental issue. Low temperatures greatly impact the ability of organisms to degrade these wastes and convert them into nutrients. Here, we report the isolation and genomic characterization of a microbial consortium capable of degrading corn straw at low temperatures. The microorganisms isolated showed fast cellulose-degrading capabilities, as confirmed by scanning electron microscopy and the weight loss in corn straw. Bacteria in the consortium behaved as three diverse and functionally distinct populations, while fungi behaved as a single population in both diversity and functions overtime. The bacterial genus Pseudomonas and the fungal genus Thermoascus had prominent roles in the microbial consortium, showing significant lignocellulose waste-degrading functions. Bacteria and fungi present in the consortium contained high relative abundance of genes for membrane components, with amino acid breakdown and carbohydrate degradation being the most important metabolic pathways for bacteria, while fungi contained more genes involved in energy use, carbohydrate degradation, lipid and fatty acid decomposition, and biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...