Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 148(10): 2571-2578, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33368249

ABSTRACT

Cervical cancer remains a leading cause of cancer death for women in low- and middle-income countries. The goal of our study was to evaluate screening and triage strategies, including high-resolution microendoscopy (HRME), to detect cervical abnormalities concerning for precancer at the point of care. Women (n = 1824) were enrolled at the Instituto de Cáncer de El Salvador. All underwent screening by both human papillomavirus (HPV) testing using careHPV and visual inspection with acetic acid (VIA). Screen-positives, along with 10% of screen-negatives, were invited to return for a follow-up examination that included triage with VIA, colposcopy and HRME imaging. Biopsies were taken of any abnormalities identified. If no abnormalities were identified, then the worst scoring site by HRME was biopsied. The sensitivities of HPV testing and VIA to screen for cervical intraepithelial neoplasia Grade 2 or more severe diagnoses (CIN2+) were 82.1% and 75% (P = .77), while the specificities were 90.4% and 80.9% (P < .001), respectively. The sensitivities of VIA, colposcopy and HRME as triage tests for CIN2+ were 82.1%, 82.1% and 71.4%, respectively (P ≥ .38). HRME had a significantly higher specificity (66.7%) than VIA (51.9%) (P < .001) and colposcopy (53.3%) (P < .001). When evaluating different theoretical screening and triage strategies, screening with HPV testing followed by triage with HRME would result in more women receiving appropriate care (97%) compared to screening with VIA (75%) or HPV alone (90%). Our findings demonstrate that screening with HPV is superior to VIA, and that triage with HRME imaging increases the specificity of detecting CIN2+ at the point of care in a low-resource setting.

2.
Nucleic Acids Res ; 41(Web Server issue): W41-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23748955

ABSTRACT

Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.


Subject(s)
Genomics/methods , Software , Genome , Internet
3.
Nucleic Acids Res ; 36(Web Server issue): W308-14, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18508806

ABSTRACT

Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Software , Computer Graphics , Dose-Response Relationship, Drug , Internet , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...