Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cell ; 186(23): 4985-4991, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949054

ABSTRACT

Mexican, Puerto Rican, and Central American Ancestry (MPRCA) individuals represent 82% of US Latinos. An intergenerational group of MPRCA women and allies met to discuss persistent underrepresentation of MPRCA women in STEM, identifying multi-level challenges and solutions. Implementation of these solutions is important and will benefit MPRCA women and the entire academic community.


Subject(s)
Hispanic or Latino , Science , Female , Humans , United States , Science/education
2.
Sci Adv ; 8(17): eabm3945, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35476441

ABSTRACT

The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin, and MCM2, an integral component of the DNA replication machinery; moreover, NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in the G1-S phase of the cell cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. NPM1 chaperone activity may contribute to the integrity of this process as appropriate inheritance required the NPM1 acidic patches.

3.
Sci Rep ; 11(1): 11498, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075120

ABSTRACT

MicroRNA miR-155 is an important regulatory molecule in the immune system and is highly expressed and functional in Th17 cells, a subset of CD4+ T helper cells which are key players in autoimmune diseases. Small molecules that can modulate miR-155 may potentially provide new therapeutic avenues to inhibit Th17 cell-mediated autoimmune diseases. Here, we present a novel high-throughput screening assay using primary T cells from genetically engineered Mir155 reporter mice, and its use to screen libraries of small molecules to identify novel modulators of Th17 cell function. We have discovered a chemical series of (E)-1-(phenylsulfonyl)-2-styryl-1H-benzo[d] imidazoles as novel down-regulators of Mir155 reporter and cytokine expression in Th17 cells. In addition, we found that FDA approved antiparasitic agents belonging to the 'azole' family also down-regulate Mir155 reporter and cytokine expression in Th17 cells, and thus could potentially be repurposed to treat Th17-driven immunopathologies.


Subject(s)
Down-Regulation/drug effects , Genes, Reporter , Imidazoles/pharmacology , MicroRNAs/biosynthesis , Th17 Cells/metabolism , Transcription, Genetic/drug effects , Animals , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/immunology , Down-Regulation/genetics , Down-Regulation/immunology , Imidazoles/chemistry , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/immunology , Th17 Cells/immunology , Transcription, Genetic/genetics , Transcription, Genetic/immunology
4.
Nat Rev Genet ; 22(6): 379-392, 2021 06.
Article in English | MEDLINE | ID: mdl-33500558

ABSTRACT

Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.


Subject(s)
Cell Lineage , Chromatin Assembly and Disassembly , DNA Replication , Epigenesis, Genetic , Inheritance Patterns , Nucleosomes/metabolism , Humans , Nucleosomes/genetics , Parents
5.
Sci Rep ; 10(1): 3766, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111885

ABSTRACT

Th17 cells are critical drivers of autoimmune diseases and immunopathology. There is an unmet need to develop therapies targeting pathogenic Th17 cells for the treatment of autoimmune disorders. Here, we report that anxiolytic FGIN-1-27 inhibits differentiation and pathogenicity of Th17 cells in vitro and in vivo using the experimental autoimmune encephalomyelitis (EAE) model of Th17 cell-driven pathology. Remarkably, we found that the effects of FGIN-1-27 were independent of translocator protein (TSPO), the reported target for this small molecule, and instead were driven by a metabolic switch in Th17 cells that led to the induction of the amino acid starvation response and altered cellular fatty acid composition. Our findings suggest that the small molecule FGIN-1-27 can be re-purposed to relieve autoimmunity by metabolic reprogramming of pathogenic Th17 cells.


Subject(s)
Anti-Anxiety Agents/pharmacology , Autoimmunity/drug effects , Cellular Reprogramming Techniques , Encephalomyelitis, Autoimmune, Experimental , Indoleacetic Acids/pharmacology , Th17 Cells/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Mice , Mice, Transgenic , Receptors, GABA/immunology , Th17 Cells/pathology
6.
Cell ; 179(4): 953-963.e11, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675501

ABSTRACT

Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Epigenesis, Genetic , Nucleosomes/genetics , Animals , Cell Differentiation/genetics , Cell Division/genetics , Cell Lineage/genetics , DNA Replication/genetics , Histones/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Protein Processing, Post-Translational/genetics
7.
Mol Cell ; 76(3): 412-422.e5, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31522988

ABSTRACT

The function of the CCCTC-binding factor (CTCF) in the organization of the genome has become an important area of investigation, but the mechanisms by which CTCF dynamically contributes to genome organization are not clear. We previously discovered that CTCF binds to large numbers of endogenous RNAs, promoting its self-association. In this regard, we now report two independent features that disrupt CTCF association with chromatin: inhibition of transcription and disruption of CTCF-RNA interactions through mutations of 2 of its 11 zinc fingers that are not required for CTCF binding to its cognate DNA site: zinc finger 1 (ZF1) or zinc finger 10 (ZF10). These mutations alter gene expression profiles as CTCF mutants lose their ability to form chromatin loops and thus the ability to insulate chromatin domains and to mediate CTCF long-range genomic interactions. Our results point to the importance of CTCF-mediated RNA interactions as a structural component of genome organization.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Mouse Embryonic Stem Cells/metabolism , RNA/metabolism , Animals , Binding Sites , CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/genetics , Cell Line , Chromatin/chemistry , Chromatin/genetics , Mice , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Interaction Domains and Motifs , RNA/chemistry , RNA/genetics , Structure-Activity Relationship , Transcription, Genetic , Zinc Fingers
8.
Nat Commun ; 10(1): 2157, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089138

ABSTRACT

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Skin Neoplasms/immunology , Transcription Factors/metabolism , Adoptive Transfer/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/genetics , Cell Differentiation/immunology , Cellular Senescence/genetics , Cellular Senescence/immunology , Epigenesis, Genetic/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Polycomb Repressive Complex 2/immunology , Polycomb Repressive Complex 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Transcription Factors/genetics , Transcription Factors/immunology
9.
Hum Immunol ; 77(2): 201-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26686412

ABSTRACT

The major goal of this study was to perform an in depth characterization of the "gene signature" of human FoxP3(+) T regulatory cells (Tregs). Highly purified Tregs and T conventional cells (Tconvs) from multiple healthy donors (HD), either freshly explanted or activated in vitro, were analyzed via RNA sequencing (RNA-seq) and gene expression changes validated using the nCounter system. Additionally, we analyzed microRNA (miRNA) expression using TaqMan low-density arrays. Our results confirm previous studies demonstrating selective gene expression of FoxP3, IKZF2, and CTLA4 in Tregs. Notably, a number of yet uncharacterized genes (RTKN2, LAYN, UTS2, CSF2RB, TRIB1, F5, CECAM4, CD70, ENC1 and NKG7) were identified and validated as being differentially expressed in human Tregs. We further characterize the functional roles of RTKN2 and LAYN by analyzing their roles in vitro human Treg suppression assays by knocking them down in Tregs and overexpressing them in Tconvs. In order to facilitate a better understanding of the human Treg gene expression signature, we have generated from our results a hypothetical interactome of genes and miRNAs in Tregs and Tconvs.


Subject(s)
Immune Tolerance/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Transcriptome , Cells, Cultured , Forkhead Transcription Factors/metabolism , Gene Regulatory Networks , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , MicroRNAs/genetics , RNA, Small Interfering/genetics
10.
Mol Cell ; 60(4): 697-709, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26527279

ABSTRACT

Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Although histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase.


Subject(s)
Histone Chaperones/metabolism , Histones/metabolism , Mass Spectrometry/methods , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Minichromosome Maintenance Proteins/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Protein Binding
11.
Immunity ; 40(6): 865-79, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24856900

ABSTRACT

Specification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient Th17 and T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9, and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.


Subject(s)
Cytokines/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Polycomb Repressive Complex 2/immunology , Th17 Cells/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Cell Differentiation/immunology , Cells, Cultured , Chromatin/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Binding , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology
12.
Nat Immunol ; 14(11): 1190-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056746

ABSTRACT

Although intergenic long noncoding RNAs (lincRNAs) have been linked to gene regulation in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identified 1,524 lincRNA clusters in 42 T cell samples, from early T cell progenitors to terminally differentiated helper T cell subsets. Our analysis revealed highly dynamic and cell-specific expression patterns for lincRNAs during T cell differentiation. These lincRNAs were located in genomic regions enriched for genes that encode proteins with immunoregulatory functions. Many were bound and regulated by the key transcription factors T-bet, GATA-3, STAT4 and STAT6. We found that the lincRNA LincR-Ccr2-5'AS, together with GATA-3, was an essential component of a regulatory circuit in gene expression specific to the TH2 subset of helper T cells and was important for the migration of TH2 cells.


Subject(s)
Gene Expression Regulation/immunology , Precursor Cells, T-Lymphoid/metabolism , RNA, Long Noncoding/genetics , Th1 Cells/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Animals , Cell Differentiation , Cell Movement , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Genetic Loci , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Protein Binding , RNA, Long Noncoding/immunology , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , STAT4 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , STAT6 Transcription Factor/metabolism , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology , Transcriptome/immunology
13.
Invest Ophthalmol Vis Sci ; 54(6): 4017-25, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23674757

ABSTRACT

PURPOSE: MicroRNA-155 (miR-155) and STAT3 are implicated in uveitis and pathogenic mechanisms of CNS autoimmune diseases. In our study, we used miR-155(-/-) mice and mice with targeted STAT3 deletion in T cells (CD4-STAT3KO) to investigate roles of miR-155 and STAT3 in the development of experimental autoimmune uveitis (EAU), a mouse model of human uveitis. METHODS: We induced EAU in WT, miR-155(-/-), or CD4-STAT3KO mice by immunization with interphotoreceptor retinoid-binding protein/complete Freund's adjuvant (IRBP/CFA) or adoptive transfer of T cells. EAU was assessed by funduscopy and histology. RNA expression was analyzed by quantitative PCR (qPCR), while cytokine production was assessed by fluorescence-activated cell sorting (FACS). RESULTS: We used a combination of genomic and genetic tools to provide the first evidence that STAT3 binds directly to the miR-155 locus and that STAT3 is required for miR-155 expression. Furthermore, STAT3-dependent increase in miR-155 expression in vivo correlated temporally with onset of EAU, and miR-155(-/-) or CD4-STAT3KO mice did not suffer EAU. CD4(+) lymph node cells from IRBP-immunized WT mice transferred EAU to naïve wild-type (WT) and miR-155(-/-) mice, while miR-155(-/-) IRBP-specific T cells did not. CONCLUSIONS: Although miR-155 and STAT3 have been implicated in the etiology of multiple sclerosis (MS), uveitis, or rheumatoid arthritis, their exact roles in these diseases are unclear. We show here for the first time to our knowledge that STAT3 regulates miR-155 expression in Th17 cells. We show further that STAT3 and miR-155 form an axis that promotes the expansion of pathogenic Th17 cells that mediate uveitis. Thus, STAT3 and miR-155 may be therapeutic targets for treating uveitis and other Th17-mediated inflammatory disorders.


Subject(s)
Autoimmune Diseases/immunology , MicroRNAs/immunology , STAT3 Transcription Factor/immunology , Th17 Cells/immunology , Uveitis/immunology , Adoptive Transfer , Animals , Autoantigens/immunology , Autoantigens/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Male , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Retina/immunology , Retina/pathology , STAT3 Transcription Factor/metabolism , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/pathology , Uveitis/genetics , Uveitis/pathology , Vitreous Body/immunology , Vitreous Body/pathology
14.
Immunity ; 38(4): 742-53, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601686

ABSTRACT

MicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired. Similarly, Mir155(-/-) CD8(+) T cells were ineffective at controlling tumor growth, whereas miRNA-155 overexpression enhanced the antitumor response. miRNA-155 deficiency resulted in accumulation of suppressor of cytokine signaling-1 (SOCS-1) causing defective cytokine signaling through STAT5. Consistently, enforced expression of SOCS-1 in CD8(+) T cells phenocopied the miRNA-155 deficiency, whereas SOCS-1 silencing augmented tumor destruction. These findings identify miRNA-155 and its target SOCS-1 as key regulators of effector CD8(+) T cells that can be modulated to potentiate immunotherapies for infectious diseases and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Adoptive Transfer , Animals , Apoptosis/genetics , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , RNA, Small Interfering/genetics , STAT6 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Virus Replication/genetics
15.
PLoS One ; 7(5): e38130, 2012.
Article in English | MEDLINE | ID: mdl-22666460

ABSTRACT

Partial inactivation of the Ankyrin repeat domain 26 (Ankrd26) gene causes obesity and diabetes in mice and increases spontaneous and induced adipogenesis in mouse embryonic fibroblasts. However, it is not yet known how the Ankrd26 protein carries out its biological functions. We identified by yeast two-hybrid and immunoprecipitation assays the triple functional domain protein (TRIO), the G protein pathway suppressor 2 (GPS2), the delta-interacting protein A (DIPA) and the hyaluronan-mediated motility receptor (HMMR) as ANKRD26 interacting partners. Adipogenesis of 3T3-L1 cells was increased by selective down-regulation of Ankrd26, Trio, Gps2, Hmmr and Dipa. Furthermore, GPS2 and DIPA, which are normally located in the nucleus, were translocated to the cytoplasm, when the C-terminus of ANKRD26 was introduced into these cells. These findings provide biochemical evidence that ANKRD26, TRIO, GPS2 and HMMR are novel and important regulators of adipogenesis and identify new targets for the modulation of adipogenesis.


Subject(s)
Adipogenesis , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Hyaluronan Receptors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , 3T3-L1 Cells , Animals , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Hyaluronan Receptors/genetics , Immunoprecipitation , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Mice , Phosphoproteins/deficiency , Phosphoproteins/genetics , Protein Binding , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Transport , Reproducibility of Results , Transcription Factors/deficiency , Transcription Factors/genetics , Two-Hybrid System Techniques
16.
Mol Cell Biol ; 31(23): 4746-59, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21969605

ABSTRACT

Chd1- and ISWI-type chromatin remodelers can sense extranucleosomal DNA and preferentially shift nucleosomes toward longer stretches of available DNA. The DNA-binding domains of these chromatin remodelers are believed to be responsible for sensing extranucleosomal DNA and are needed for robust sliding, but it is unclear how these domains contribute to directional movement of nucleosomes. Here, we show that the DNA-binding domain of Chd1 is not essential for nucleosome sliding but is critical for centering mononucleosomes on short DNA fragments. Remarkably, nucleosome centering was achieved by replacing the native DNA-binding domain of Chd1 with foreign DNA-binding domains of Escherichia coli AraC or Drosophila melanogaster engrailed. Introducing target DNA sequences recognized by the foreign domains enabled the remodelers to rapidly shift nucleosomes toward these binding sites, demonstrating that these foreign DNA-binding domains dictated the direction of sliding. Sequence-directed sliding occluded the target DNA sequences on the nucleosome enough to promote release of the remodeler. Target DNA sequences were highly stimulatory at multiple positions flanking the nucleosome and had the strongest influence when separated from the nucleosome by 23 or fewer base pairs. These results suggest that the DNA-binding domain's affinity for extranucleosomal DNA is the key determinant for the direction that Chd1 shifts the nucleosome.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/chemistry , Nucleosomes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae , Adenosine Triphosphate/chemistry , AraC Transcription Factor/chemistry , AraC Transcription Factor/genetics , Base Sequence , Binding Sites , DNA-Binding Proteins/genetics , Electrophoretic Mobility Shift Assay , Enzyme Assays , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Fluorometry , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion
17.
EMBO J ; 30(15): 3028-39, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21701563

ABSTRACT

Cell-selective glucocorticoid receptor (GR) binding to distal regulatory elements is associated with cell type-specific regions of locally accessible chromatin. These regions can either pre-exist in chromatin (pre-programmed) or be induced by the receptor (de novo). Mechanisms that create and maintain these sites are not well understood. We observe a global enrichment of CpG density for pre-programmed elements, and implicate their demethylated state in the maintenance of open chromatin in a tissue-specific manner. In contrast, sites that are actively opened by GR (de novo) are characterized by low CpG density, and form a unique class of enhancers devoid of suppressive effect of agglomerated methyl-cytosines. Furthermore, treatment with glucocorticoids induces rapid changes in methylation levels at selected CpGs within de novo sites. Finally, we identify GR-binding elements with CpGs at critical positions, and show that methylation can affect GR-DNA interactions in vitro. The findings present a unique link between tissue-specific chromatin accessibility, DNA methylation and transcription factor binding and show that DNA methylation can be an integral component of gene regulation by nuclear receptors.


Subject(s)
DNA Methylation , DNA/metabolism , Enhancer Elements, Genetic , Receptors, Glucocorticoid/metabolism , Animals , Cell Line , Chromatin/metabolism , Mice , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...