Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38592776

ABSTRACT

This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry.

2.
Polymers (Basel) ; 14(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35335468

ABSTRACT

The main by-product generated in the wine industry are the grape canes, derived from the pruning process. In order to increase the valorisation possibilities of this highly polyphenolic lignocellulosic material, this work focuses on its applicability in the materials industry. As a first step, we demonstrate the viability of using grape cane particles as raw material for particleboard production, combined with a melamine formaldehyde urea (MFU) binder. In addition, looking for the application of these particleboards in the food packaging industry, particleboards based on grape canes were also produced using a new bioadhesive, obtained from the grape cane extract and citric acid. The self-condensation reaction of the grape cane extracts, and the curing reaction with citric acid, were studied by FTIR-ATR and ABES showing the feasibility of this new bioadhesive formulation. Looking for a zero-waste process, the effect of the type of raw material (fresh grape cane, solid by-product of the extraction) and of the extract used on the properties of particleboard were also studied. Citric acid was demonstrated to be a good crosslinking agent for grape cane extract. This work shows that it is possible to produce a new lignocellulosic product based only on grape cane particles using a binder based on grape cane extracts and citric acid. The implemented methodology allowed producing particleboards with applicability in the food-packaging industry, minimizing the waste generated in the process.

3.
Antioxidants (Basel) ; 10(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34356363

ABSTRACT

Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GCPPE) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-ß-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with ß-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GCPPE for water-soluble food and pharmaceutical applications.

4.
Food Res Int ; 143: 110265, 2021 05.
Article in English | MEDLINE | ID: mdl-33992366

ABSTRACT

Grape canes, also named vine shoots, are well-known viticultural byproducts containing high levels of phenolic compounds, which are associated with a broad range of health benefits. In this work, grape canes (Vitis vinifera cv. Pinot noir) were extracted in a 750 L pilot-plant reactor under the following conditions: temperature 80 °C, time 100 min, solid/liquid ratio 1:10. The comprehensive characterization of grape cane phenolic compounds was performed by liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry. A total of 44 compounds were identified and, 26 of them also quantified, consisting of phenolic acids and aldehydes (17), flavonoids (12), and stilbenoids (15). The most abundant class of phenolics were stilbenoids, among which (E)-ε-viniferin predominated. The phenolic profile of grape canes obtained using pilot plant extraction differed significantly from the results of laboratory-scale studies obtained previously. Additionally, we observed a high antioxidant capacity of grape cane pilot-plant extract measured by the radical antioxidant scavenging potential (ABTS+) (2209 ± 125 µmol TE/g DW) and oxygen radical absorbance capacity using fluorescein (ORAC-FL) (4612 ± 155 µmol TE/g DW). Grape cane pilot-plant extract for their phenolic profile may be used as a by-product for the development of novel nutraceutical and pharmaceutical products, improving the value and the sustainability of these residues.


Subject(s)
Vitis , Canes , Chromatography, Liquid , Mass Spectrometry , Phenols
5.
Molecules ; 25(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178240

ABSTRACT

Raisins are dried grapes mostly obtained from cultivars of Vitis vinifera L. and are extensively consumed worldwide. They are rich in bioactive compounds such as polyphenols, which are associated with a broad range of health benefits. The aim of the present study was to compare the phenolic profiles of three different raisin varieties (Thompson seedless, Muscat, and sultanas). Total polyphenols (TPs) were evaluated by the Folin-Ciocalteu (F-C) assay and significant differences were observed among all raisin varieties. Furthermore, liquid chromatography coupled with electrospray ionization hybrid linear ion trap quadrupole-Orbitrap-mass spectrometry (LC/ESI-LTQ-Orbitrap-MS) was employed for the comprehensive identification of phenolic constituents. A total of 45 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavanoids, flavonoids, flavonols, flavones, and stilbenoids. The three varieties of raisins showed a similar phenolic profile, although the highest number of phenolic compounds was identified in Muscat raisins owing to the proanthocyanidins extracted from their seeds, while stilbenoids were not detected in the Thompson variety.


Subject(s)
Flavonoids/chemistry , Phenols/chemistry , Polyphenols/chemistry , Vitis/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Flavonoids/isolation & purification , Flavonols/chemistry , Fruit/chemistry , Phenols/isolation & purification , Polyphenols/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Stilbenes/chemistry
6.
Nutrients ; 12(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878160

ABSTRACT

Raisins are dried grapes consumed worldwide that contain beneficial components for human health. They are rich in fiber and phytochemicals such as phenolic compounds. Despite a 60% sugar content, several studies have reported health-promoting properties for raisins and this review compiles the intervention studies, as well as the cell line and animal model studies carried out to date. It has been demonstrated that raisins possess a low-to-moderate glycemic index, which makes them a healthy snack. They seem to contribute to a better diet quality and may reduce appetite. Their antioxidant capacity has been correlated to the phenolic content and this may be involved in the improvement of cardiovascular health. In addition, raisins maintain a good oral health due to their antibacterial activity, low adherence to teeth and an optimum oral pH. Raisin consumption also seems to be favorable for colon function, although more studies should be done to conclude this benefit. Moreover, gut microbiota could be affected by the prebiotic content of raisins. Cell line and animal model studies show other potential benefits in specific diseases, such as cancer and Alzheimer's disease. However, deeper research is required and future intervention studies with humans are needed. Overall, incorporating an 80-90 g portion of raisins (half a cup) into the daily diet may be favorable for human health.


Subject(s)
Fruit , Vitis , Animals , Diet , Food Handling , Humans , Snacks
SELECTION OF CITATIONS
SEARCH DETAIL
...