Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(16): 10956-10974, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35948083

ABSTRACT

Spinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA2) has recently emerged as a new potential pharmacological approach to decrease SCI-associated damage. Toward validating this receptor as a target in SCI, we have developed a new series of LPA2 antagonists, among which compound 54 (UCM-14216) stands out as a potent and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 µM, KD = 1.3 nM; inactive at LPA1,3-6 receptors). This compound shows efficacy in an in vivo mouse model of SCI in an LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.


Subject(s)
Receptors, Lysophosphatidic Acid , Spinal Cord Injuries , Animals , Mice , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Spinal Cord , Spinal Cord Injuries/drug therapy
2.
J Med Chem ; 65(7): 5449-5461, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35349261

ABSTRACT

Peptidic agonists of the glucagon-like peptide-1 receptor (GLP-1R) have gained a prominent role in the therapy of type-2 diabetes and are being considered for reducing food intake in obesity. Potential advantages of small molecules acting as positive allosteric modulators (PAMs) of GLP-1R, including oral administration and reduced unwanted effects, could improve the utility of this class of drugs. Here, we describe the discovery of compound 9 (4-{[1-({3-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-5-yl}methyl)piperidin-3-yl]methyl}morpholine, V-0219) that exhibits enhanced efficacy of GLP-1R stimulation, subnanomolar potency in the potentiation of insulin secretion, and no significant off-target activities. The identified GLP-1R PAM shows a remarkable in vivo activity, reducing food intake and improving glucose handling in normal and diabetic rodents. Enantioselective synthesis revealed oral efficacy for (S)-9 in animal models. Compound 9 behavior bolsters the interest of a small-molecule PAM of GLP-1R as a promising therapeutic approach for the increasingly prevalent obesity-associated diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Administration, Oral , Animals , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Obesity/drug therapy , Peptides/therapeutic use
3.
J Med Chem ; 64(9): 5730-5745, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33908781

ABSTRACT

Bacterial resistance to antibiotics makes previously manageable infections again disabling and lethal, highlighting the need for new antibacterial strategies. In this regard, inhibition of the bacterial division process by targeting key protein FtsZ has been recognized as an attractive approach for discovering new antibiotics. Binding of small molecules to the cleft between the N-terminal guanosine triphosphate (GTP)-binding and the C-terminal subdomains allosterically impairs the FtsZ function, eventually inhibiting bacterial division. Nonetheless, the lack of appropriate chemical tools to develop a binding screen against this site has hampered the discovery of FtsZ antibacterial inhibitors. Herein, we describe the first competitive binding assay to identify FtsZ allosteric ligands interacting with the interdomain cleft, based on the use of specific high-affinity fluorescent probes. This novel assay, together with phenotypic profiling and X-ray crystallographic insights, enables the identification and characterization of FtsZ inhibitors of bacterial division aiming at the discovery of more effective antibacterials.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Allosteric Site , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/antagonists & inhibitors , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Crystallography, X-Ray , Cytoskeletal Proteins/antagonists & inhibitors , Fluorescence Polarization , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Ligands , Microbial Sensitivity Tests , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...