Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(4): 1942-1951, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38170857

ABSTRACT

Iron oxide nanoflowers (IONF) are densely packed multi-core aggregates known for their high saturation magnetization and initial susceptibility, as well as low remanence and coercive field. This study reports on how the local magnetic texture originating at the crystalline correlations among the cores determines the special magnetic properties of individual IONF over a wide size range from 40 to 400 nm. Regardless of this significant size variation in the aggregates, all samples exhibit a consistent crystalline correlation that extends well beyond the IONF cores. Furthermore, a nearly zero remnant magnetization, together with the presence of a persistently blocked state, and almost temperature-independent field-cooled magnetization, support the existence of a 3D magnetic texture throughout the IONF. This is confirmed by magnetic transmission X-ray microscopy images of tens of individual IONF, showing, in all cases, a nearly demagnetized state caused by the vorticity of the magnetic texture. Micromagnetic simulations agree well with these experimental findings, showing that the interplay between the inter-core direct exchange coupling and the demagnetizing field is responsible for the highly vortex-like spin configuration that stabilizes at low magnetic fields and appears to have partial topological protection. Overall, this comprehensive study provides valuable insights into the impact of crystalline texture on the magnetic properties of IONF over a wide size range, offering a deeper understanding of their potential applications in fields such as biomedicine and water remediation.

2.
Phys Chem Chem Phys ; 25(5): 3900-3911, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36648114

ABSTRACT

We report on the controlled synthesis and functionalization in two steps of elongated Bi2S3 nanoparticles within a wide range of sizes. First, we show the effect of the temperature and reaction time on the synthesis of two series of nanoparticles by the reaction of thioacetamide with bismuth(III) neodecanoate in the presence of organic surfactants. At 105 °C and long reaction times, nanoneedles of about 45 nm in length containing larger crystallites are obtained, while highly crystalline nanorods of about 30 nm in length are dominant at 165 °C, regardless of the reaction time. The optical properties of both types of nanoparticles show an enhancement of the band gap compared to bulk Bi2S3. This is likely to arise from quantum confinement effects caused by the small particle dimensions relative to the typical exciton size, together with an increase in near-infrared absorption due to the anisotropic particle shape. Second, a ligand exchange approach has been developed to transfer the Bi2S3 nanoparticles to aqueous solutions by grafting dimercaptosuccinic acid onto the surface of the particles. The as-prepared coated nanoparticles show good stability in water, in a wide biological pH range, and in phosphate-buffered saline solutions. Overall, this work highlights the controlled design at all levels - from the inorganic core to the organic surface coating - of elongated Bi2S3 nanoparticles, leading to a tunable optical response by tuning their morphology and size.

3.
Langmuir ; 37(1): 35-45, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33301314

ABSTRACT

Iron oxide nanoparticles (NPs) have been extensively used for both health and technological applications. The control over their morphology, crystal microstructure, and oxidation state is of great importance to optimize their final use. However, while mature in understanding, it is still far from complete. Here we report on the effect of the amount of 1,2-hexadecanediol and/or 1-octadecene in the reaction mixture on the thermal decomposition of iron(III) acetylacetonate in oleic acid for two series of iron oxide NPs with sizes ranging from 6 to 48 nm. We show that a low amount of either compound leads to both large, mixed-phase NPs composed of magnetite (Fe3O4) and wüstite (FeO) and high reaction yields. In contrast, a higher amount of either 1,2-hexadecanediol or 1-octadecene gives rise to smaller, single-phase NPs with moderate reaction yields. By infrared spectroscopy, we have elucidated the role of 1,2-hexadecanediol, which mediates the particle nucleation and growth. Finally, we have correlated the magnetic response and the structural features of the NPs for the two series of samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...