Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 69: 103027, 2024 02.
Article in English | MEDLINE | ID: mdl-38184999

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease that compromises liver function, for which there is not a specifically approved medicine. Recent research has identified transcription factor NRF2 as a potential therapeutic target. However, current NRF2 activators, designed to inhibit its repressor KEAP1, exhibit unwanted side effects. Alternatively, we previously introduced PHAR, a protein-protein interaction inhibitor of NRF2/ß-TrCP, which induces a mild NRF2 activation and selectively activates NRF2 in the liver, close to normal physiological levels. Herein, we assessed the effect of PHAR in protection against NASH and its progression to fibrosis. We conducted experiments to demonstrate that PHAR effectively activated NRF2 in hepatocytes, Kupffer cells, and stellate cells. Then, we used the STAM mouse model of NASH, based on partial damage of endocrine pancreas and insulin secretion impairment, followed by a high fat diet. Non-invasive analysis using MRI revealed that PHAR protects against liver fat accumulation. Moreover, PHAR attenuated key markers of NASH progression, including liver steatosis, hepatocellular ballooning, inflammation, and fibrosis. Notably, transcriptomic data indicate that PHAR led to upregulation of 3 anti-fibrotic genes (Plg, Serpina1a, and Bmp7) and downregulation of 6 pro-fibrotic (including Acta2 and Col3a1), 11 extracellular matrix remodeling, and 8 inflammatory genes. Overall, our study suggests that the mild activation of NRF2 via the protein-protein interaction inhibitor PHAR holds promise as a strategy for addressing NASH and its progression to liver fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , beta-Transducin Repeat-Containing Proteins , Fibrosis , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/drug therapy
2.
Antioxidants (Basel) ; 11(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35624810

ABSTRACT

Transcription factor NRF2 is a master regulator of the multiple cytoprotective responses that confer growth advantages on a cell. However, its participation in the mechanisms that govern the cell division cycle has not been explored in detail. In this study, we used several standard methods of synchronization of proliferating cells together with flow cytometry and monitored the participation of NRF2 along the cell cycle by the knockdown of its gene expression. We found that the NRF2 levels were highest at S phase entry, and lowest at mitosis. NRF2 depletion promoted both G1 and M arrest. Targeted transcriptomics analysis of cell cycle regulators showed that NRF2 depletion leads to changes in key cell cycle regulators, such as CDK2, TFDP1, CDK6, CDKN1A (p21), CDKN1B (p27), CCNG1, and RAD51. This study gives a new dimension to NRF2 effects, showing their implication in cell cycle progression.

3.
Cells ; 9(10)2020 10 02.
Article in English | MEDLINE | ID: mdl-33023162

ABSTRACT

The mechanisms involved in regulation of quiescence, proliferation, and reprogramming of Neural Stem Progenitor Cells (NSPCs) of the mammalian brain are still poorly defined. Here, we studied the role of the transcriptional co-factor TAZ, regulated by the WNT and Hippo pathways, in the homeostasis of NSPCs. We found that, in the murine neurogenic niches of the striatal subventricular zone and the dentate gyrus granular zone, TAZ is highly expressed in NSPCs and declines with ageing. Moreover, TAZ expression is lost in immature neurons of both neurogenic regions. To characterize mechanistically the role of TAZ in neuronal differentiation, we used the midbrain-derived NSPC line ReNcell VM to replicate in a non-animal model the factors influencing NSPC differentiation to the neuronal lineage. TAZ knock-down and forced expression in NSPCs led to increased and reduced neuronal differentiation, respectively. TEADs-knockdown indicated that these TAZ co-partners are required for the suppression of NSPCs commitment to neuronal differentiation. Genetic manipulation of the TAZ/TEAD system showed its participation in transcriptional repression of SOX2 and the proneuronal genes ASCL1, NEUROG2, and NEUROD1, leading to impediment of neurogenesis. TAZ is usually considered a transcriptional co-activator promoting stem cell proliferation, but our study indicates an additional function as a repressor of neuronal differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Neural Stem Cells/metabolism , Animals , Cell Differentiation , Cell Proliferation , Humans , Mice , Neurogenesis
4.
Antioxidants (Basel) ; 9(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825452

ABSTRACT

Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.

5.
Trends Pharmacol Sci ; 41(9): 598-610, 2020 09.
Article in English | MEDLINE | ID: mdl-32711925

ABSTRACT

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , NF-E2-Related Factor 2/metabolism , Pneumonia, Viral/drug therapy , COVID-19 , Cytoprotection , Granulocytes/drug effects , Granulocytes/virology , Homeostasis , Humans , Oxidation-Reduction , Pandemics
6.
Redox Biol ; 30: 101425, 2020 02.
Article in English | MEDLINE | ID: mdl-31918259

ABSTRACT

Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database. Moreover, NRF2 and TAZ protein levels also correlated in immunohistochemical tissue arrays of glioblastomas. Genetic knock-down of NRF2 decreased, while NRF2 overexpression or chemical activation with sulforaphane, increased TAZ transcript and protein levels. Mechanistically, we identified several NRF2-regulated functional enhancers in the regulatory region of WWTR1. The relevance of the new NRF2/TAZ axis in tumorigenesis was demonstrated in subcutaneous and intracranial grafts. Thus, intracranial inoculation of NRF2-depleted glioma stem cells did not develop tumors as determined by magnetic resonance imaging. Forced TAZ overexpression partly rescued both stem cell growth in neurospheres and tumorigenicity. Hence, NRF2 not only enables tumor cells to be competent to proliferate but it also propels tumorigenesis by activating the TAZ-mediated Hippo transcriptional program.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Trans-Activators/genetics , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , HEK293 Cells , Hippo Signaling Pathway , Humans , Male , Mice , Neoplasm Transplantation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tissue Array Analysis , Transcriptional Coactivator with PDZ-Binding Motif Proteins
7.
Cell Rep ; 17(8): 1962-1977, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851961

ABSTRACT

In cancer, the deregulation of growth signaling pathways drives changes in the cell's architecture and its environment that allow autonomous growth of tumors. These cells then acquire a tumor-initiating "stemness" phenotype responsible for disease advancement to more aggressive stages. Here, we show that high levels of the actin cytoskeleton-associated protein WIP (WASP-interacting protein) correlates with tumor growth, both of which are linked to the tumor-initiating cell phenotype. We find that WIP controls tumor growth by boosting signals that stabilize the YAP/TAZ complex via a mechanism mediated by the endocytic/endosomal system. When WIP levels are high, the ß-catenin Adenomatous polyposis coli (APC)-axin-GSK3 destruction complex is sequestered to the multi-vesicular body compartment, where its capacity to degrade YAP/TAZ is inhibited. YAP/TAZ stability is dependent on Rac, p21-activated kinase (PAK) and mammalian diaphanous-related formin (mDia), and is Hippo independent. This close biochemical relationship indicates an oncogenic role for WIP in the physiology of cancer pathology by increasing YAP/TAZ stability.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Phosphoproteins/metabolism , Actins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Endocytosis , Endosomes/metabolism , Epithelial-Mesenchymal Transition , Humans , Multivesicular Bodies/metabolism , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Phenotype , Polymerization , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , beta Catenin/metabolism
8.
Autophagy ; 12(10): 1902-1916, 2016 10 02.
Article in English | MEDLINE | ID: mdl-27427974

ABSTRACT

Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid ß precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.


Subject(s)
Autophagy/genetics , Gene Expression Regulation , NF-E2-Related Factor 2/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Antioxidant Response Elements/genetics , Disease Models, Animal , HEK293 Cells , Humans , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Middle Aged , NF-E2-Related Factor 2/deficiency , Neurons/metabolism , Neurons/pathology , Promoter Regions, Genetic/genetics
9.
Stem Cells ; 33(3): 646-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25407338

ABSTRACT

Many solid tumors contain a subpopulation of cells with stem characteristics and these are known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). These cells drive tumor growth and appear to be regulated by molecular pathway different from other cells in the tumor bulk. Here, we set out to determine whether elements of the PI3K-AKT pathway are necessary to maintain the CSC-like phenotype in breast tumor cells and for these cells to survive, bearing in mind that the identification of such elements is likely to be relevant to define future therapeutic targets. Our results demonstrate a close relationship between the maintenance of the CSC-like phenotype and the survival of these TICs. Inhibiting PI3K activity, or eliminating AKT activity, mostly that of the AKT1 isoform, produces a clear drop in TICs survival, and a reduction in the generation and growth of CD44(High) /CD24(Low) mammospheres. Surprisingly, the apoptosis of these TICs that is triggered by AKT1 deficiency is also associated with a loss of the stem cell/mesenchymal phenotype and a recovery of epithelial-like markers. Finally, we define downstream effectors that are responsible for controlling the CSC-phenotype, such as FoxO-Bim, and the death of these cells in the absence of AKT1. In summary, these data closely link the maintenance of the stem cell-like phenotype and the survival of these cells to the AKT-FoxO-Bim pathway.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Forkhead Transcription Factors/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins/metabolism , Apoptosis , Bcl-2-Like Protein 11 , Cell Line, Tumor , Cell Proliferation/physiology , Female , Forkhead Box Protein O1 , Humans , MCF-7 Cells , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...