Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 17410, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234141

ABSTRACT

Cannabinoid CB2 receptors (CB2Rs) are expressed in mouse brain dopamine (DA) neurons and are involved in several DA-related disorders. However, the cell type-specific mechanisms are unclear since the CB2R gene knockout mice are constitutive gene knockout. Therefore, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre- recombinase expression is under dopamine transporter gene (DAT) promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2 conditional knockout (cKO) mice. Using a novel sensitive RNAscope in situ hybridization, we detected CB2R mRNA expression in VTA DA neurons in wildtype and DAT-Cnr2 cKO heterozygous but not in the homozygous DAT-Cnr2 cKO mice. Here we report that the deletion of CB2Rs in dopamine neurons enhances motor activities, modulates anxiety and depression-like behaviors and reduces the rewarding properties of alcohol. Our data reveals that CB2Rs are involved in the tetrad assay induced by cannabinoids which had been associated with CB1R agonism. GWAS studies indicates that the CNR2 gene is associated with Parkinson's disease and substance use disorders. These results suggest that CB2Rs in dopaminergic neurons may play important roles in the modulation of psychomotor behaviors, anxiety, depression, and pain sensation and in the rewarding effects of alcohol and cocaine.


Subject(s)
Alcohol Drinking/metabolism , Anxiety/metabolism , Depression/metabolism , Dopaminergic Neurons/metabolism , Psychomotor Performance/physiology , Receptor, Cannabinoid, CB2/metabolism , Alcohol Drinking/pathology , Anhedonia/physiology , Animals , Anxiety/pathology , Behavior, Animal/physiology , Choice Behavior/physiology , Cocaine-Related Disorders/metabolism , Depression/pathology , Dopaminergic Neurons/pathology , Mesencephalon/metabolism , Mesencephalon/pathology , Mice, Transgenic , Motor Activity/physiology , Nociceptive Pain/metabolism , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB2/genetics , Reward , Tyrosine 3-Monooxygenase/metabolism
2.
Neurobiol Learn Mem ; 130: 194-201, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26948121

ABSTRACT

Drug addiction can be viewed as a pathological memory that is constantly retrieved and reconsolidated. Since drug abuse takes place in different contexts, it could be considered that reconsolidation plays a role in memory updating. There is consistent evidence supporting the role of reconsolidation in the strength and maintenance of contextual memories induced by drugs of abuse. However, this role is not well established in memory update. The purpose of the current study was to assess the reconsolidation process over memory update. C57BL6 mice were subjected to a morphine-induced, conditioned place preference (CPP) paradigm. Based on CPP results, animals were divided into distinct experimental groups, according to the contextual characteristics of the re-exposure and a second CPP Test. Re-exposure in the original context was important for memory maintenance and re-exposure under discrete contextual changes resulted in memory updating, although original memory was maintained. Interestingly, cycloheximide, an inhibitor of protein synthesis, had different outcomes in our protocol. When the re-exposure was done under discrete contextual changes, cycloheximide treatment just after re-exposure blocked memory updating, without changes in memory maintenance. When re-exposure was done under the original context, only two subsequent cycloheximide injections (3 and 6h) disrupted later CPP expression. Considering the temporal window of protein synthesis in consolidation and reconsolidation, these findings suggest that re-exposure, according to the contextual characteristics in our protocol, could trigger both phenomena. Furthermore, when new information is present on retrieval, reconsolidation plays a pivotal role in memory updating.


Subject(s)
Analgesics, Opioid/administration & dosage , Association Learning/drug effects , Memory/drug effects , Morphine/administration & dosage , Animals , Conditioning, Operant/drug effects , Cycloheximide/pharmacology , Male , Mice , Protein Synthesis Inhibitors/pharmacology
3.
Int J Neuropsychopharmacol ; 17(11): 1815-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24905237

ABSTRACT

To address the role of mixed anxiety/mood disorder on appetitive associative learning, we verify whether previous chronic light deprivation changes ethanol-induced conditioned place preference and its respective expression of c-Fos and pCREB, markers of neuronal activity and plasticity. The experimental group was maintained in light deprivation for 24 h for a period of 4 wk. Subsequently, it was adapted to a standard light-dark cycle for 1 wk. As a control, some mice were maintained in standard cycle for a period of 4 wk (Naïve group). Then, all animals were submitted to behavioral tests to assess emotionality: elevated plus maze; open field; and forced swim. After that, they were submitted to ethanol-induced conditioned place preference. Ninety minutes after the place preference test, they were perfused, and their brains processed for c-Fos and pCREB immunohistochemistry. Light deprivation induced anxiety-like trait (elevated plus maze), despair (forced swim), and hyperlocomotion (open field), common features seen in other animal models of depression. Ethanol-induced conditioned place preference was accompanied by increases on c-Fos and pCREB in the hippocampus, prefrontal cortex and striatum. Interestingly, mice previously submitted to light deprivation did not develop either acquisition and/or expression of ethanol-induced conditioned place preference or increases in c-Fos and pCREB. Therefore, chronic light deprivation mimics several behavioral aspects of other animal models of depression. Furthermore, it could be useful to study the neurochemical mechanisms involved in the dual diagnosis. However, given its likely deleterious effects on appetitive associative memory, it should be used with caution to investigate the cognitive aspects related to the dual diagnosis.


Subject(s)
Appetite/drug effects , Association Learning/drug effects , CREB-Binding Protein/metabolism , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Sensory Deprivation/physiology , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Conditioning, Operant/drug effects , Exploratory Behavior/drug effects , Gene Expression Regulation , Light , Male , Maze Learning/drug effects , Mice , Swimming
4.
Neurochem Int ; 61(2): 277-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22613131

ABSTRACT

CB1R play a role in alcohol withdrawal and in some effects of acupuncture. Interestingly, acupuncture has been used to alleviate alcohol withdrawal. Here, we investigated electroacupuncture (EA) effects during ethanol withdrawal on CB1R immunoreactivity. Male Swiss mice were daily injected with ethanol (2g/kg, i.p) (EtOH group), for 21 days. EA was performed daily during 4 days of ethanol withdrawal. The stimuli of 2 or 100 Hz were provided in two acupoints combination: Ea1 [(ST-36/Zusanli) and (PC-6/Neiguan)] or Ea2 [(DU-14/Dazhui) and (DU-20/Baihui)]. The specificity of the acupoints were assessed by the inclusion of three additional groups, Ea3 [(ST 25/Tianshu - acupoints used to other non-related disorders)], Sham1 and Sham2 (transdermic stimulation nearly to the respective acupoints). EtOH group were only handled during withdrawal and Saline group was chronically treated with Saline and handled similarly to EtOH group. One day after withdrawal the animals were perfused and their brains processed for immunohistochemistry. There was an increase of CB1R in the prefrontal cortex, striatum, hippocampus, amygdala and ventral tegmental area. The procedures used in the 2HzEa1 and 100HzEa2 groups were the most effective and specific to inhibit this CB1R upregulation. Therefore, EA inhibits CB1R upregulation seen in ethanol withdrawn mice. The specificity of acupoints stimulation depends of the encephalic nuclei, acupoints association and frequency of stimulation.


Subject(s)
Central Nervous System Depressants/adverse effects , Electroacupuncture , Ethanol/adverse effects , Receptor, Cannabinoid, CB1/physiology , Substance Withdrawal Syndrome/metabolism , Acupuncture Points , Animals , Behavior, Animal/drug effects , Blotting, Western , Brain/pathology , Brain Chemistry , Immunohistochemistry , Male , Mice , Motor Activity/drug effects , Substance Withdrawal Syndrome/pathology , Up-Regulation/physiology
5.
Int J Neuropsychopharmacol ; 15(8): 1121-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-21859515

ABSTRACT

Extracellular signal-regulated kinase (ERK) plays a role in neuronal changes induced by repeated drug exposure. Given that electroacupuncture reverses locomotor sensitization induced by ethanol, we investigated whether this effect is parallel to ERK signalling. Mice received daily ethanol (2 g/kg i.p), for 21 d. Electroacupuncture was performed daily, during four (subsequent) days of ethanol withdrawal. The stimulus of 2 Hz or 100 Hz was provided in combinations of two acupoints: Ea1 (ST-36/Zusanli and PC-6/Neiguan) or Ea2 (Du-14/Dazhui and Du-20/Baihui). The specificity of acupoint effects were assessed by the inclusion of additional groups: Ea3 (ST-25/Tianshu--acupoint used for other non-related disorders), Sham1 or Sham2 (transdermic stimulation near the respective acupoints). The control group was only handled during withdrawal and the saline group was chronically treated with saline and handled similarly to controls. At day 5 of withdrawal, each group was divided in two subgroups, according to the presence or absence of ethanol challenge. The animals were perfused and their brains processed for pERK immunohistochemistry. Only Ea1 at 100 Hz (Ea1_100) and Ea2 at 2 Hz (Ea2_2) reversed locomotor sensitization induced by ethanol. Ethanol withdrawal decreases pERK in the dorsomedial striatum. This decrease is not abolished by electroacupuncture. Conversely, ethanol challenge increases pERK in the dorsomedial striatum, infralimbic cortex and central nucleus of amygdala. The specificity of acupoint stimulation to reverse these increases was seen only for Ea2_2, in the infralimbic cortex and dorsomedial striatum. Therefore, behavioural effects of Ea2_2 (but not Ea1_100) depend, at least in part, on ERK signalling.


Subject(s)
Alcohol-Related Disorders/therapy , Central Nervous System Depressants/adverse effects , Electroacupuncture/methods , Ethanol/adverse effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Locomotion/drug effects , Acupuncture Points , Analysis of Variance , Animals , Behavior, Animal/drug effects , Biophysics , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Electric Stimulation , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...