Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 7(41): 17441-9, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26441224

ABSTRACT

We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

2.
J Nanosci Nanotechnol ; 14(6): 4431-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24738408

ABSTRACT

We have studied the experimental conditions needed to produce LaNiO3 (LNO) nanostructures using a template-assisted method. In this route, a mesoporous anodic aluminum oxide template was filled with a chemical solution that had been prepared with polymeric precursors route. The precursor solutions and synthesized samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis, infrared spectroscopy and high-resolution scanning electron microscopy (HRSEM). The XRD results for the samples that were heat-treated at 700 degrees C revealed that these samples crystallize in a perovskite-like LaNiO3 structure. HRSEM images revealed that the samples prepared with different deposition times (0.5, 1 and 2 h) promoted the formation of LaNiO3 nanotubes with different wall thicknesses.


Subject(s)
Crystallization/methods , Molecular Imprinting/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Oxides/chemical synthesis , Macromolecular Substances/chemistry , Molecular Conformation , Niobium , Particle Size , Surface Properties
3.
J Phys Condens Matter ; 18(26): 6117-32, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-21690825

ABSTRACT

Polycrystalline Nd(1-x)Eu(x)NiO(3) (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80 bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 Å of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from T(MI)∼193 to 336 K for samples with x = 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO(3) during heating and cooling processes, suggesting a first-order character of the phase transition at T(MI). The width of this thermal hysteresis was found to decrease appreciably for the sample Nd(0.7)Eu(0.3)NiO(3). The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO(3).

SELECTION OF CITATIONS
SEARCH DETAIL
...