Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 170: 115297, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31756612

ABSTRACT

Cryptosporidium parvum, Toxoplasma gondii and Giardia duodenalis are worldwide pathogenic protozoa recognized as major causal agents of waterborne disease outbreaks. To overcome the normative process (ISO 15553/2006) limitations of protozoa detection in aquatic systems, we propose to use the zebra mussel (Dreissena polymorpha), a freshwater bivalve mollusc, as a tool for biomonitoring protozoan contamination. Mussels were exposed to three concentrations of C. parvum oocysts, G. duodenalis cysts or T. gondii oocysts for 21 days followed by 21 days of depuration in clear water. D. polymorpha accumulated protozoa in its tissues and haemolymph. Concerning T. gondii and G. duodenalis, the percentage of protozoa positive mussels reflected the contamination level in water bodies. As for C. parvum detection, oocysts did accumulate in mussel tissues and haemolymph, but in small quantities, and the limit of detection was high (between 50 and 100 oocysts). Low levels of T. gondii (1-5 oocysts/mussel) and G. duodenalis (less than 1 cyst/mussel) were quantified in D. polymorpha tissues. The ability of zebra mussels to reflect contamination by the three protozoa for weeks after the contamination event makes them a good integrative matrix for the biomonitoring of aquatic ecosystems.


Subject(s)
Bivalvia , Cryptosporidiosis , Cryptosporidium , Dreissena , Animals , Biological Monitoring , Ecosystem , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL
...