Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 150: 320-326, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29294441

ABSTRACT

To evaluate the potential role of phenolic compounds in Al and Cd stress tolerance mechanisms, Vaccinium corymbosum cv. Legacy plantlets were exposed to different metal concentrations. The present study used an in vitro plant model to test the effects of the following treatments: 100µM Al; 100µMAl + 50µMCd; and 100µMAl + 100µMCd during periods of 7, 14, 21 and 30 days. The oxidative damage was determined by the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). The antioxidant activity values were determined using 1,1-diphenyl-2-picrylhydrazine (DPPH) and the ferric reducing antioxidant power test (FRAP). Additionally, the phenolic compound concentrations were determined using HPLC-DAD. The exposure to Al and Cd increased the MDA and H2O2 contents differentially, while the antioxidant capacity values showed differences between DPPH and FRAP with the largest changes in FRAP relative to Cd. SOD had the highest activity in the first 7 days, leading to a significant increase in phenolic compounds observed after 14 days, and chlorogenic acid was the major compound identified. Our results revealed that phenolic compounds seem to play an important role in the response to ROS. Therefore, the mechanisms of tolerance to Al and Cd in V. corymbosum will be determined by the type of metal and time of exposure.


Subject(s)
Aluminum/toxicity , Antioxidants/metabolism , Blueberry Plants/drug effects , Cadmium/toxicity , Oxidative Stress/drug effects , Phenols/metabolism , Soil Pollutants/toxicity , Blueberry Plants/enzymology , Blueberry Plants/growth & development , Models, Theoretical , Oxidation-Reduction
2.
Environ Monit Assess ; 189(2): 82, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28130763

ABSTRACT

Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.


Subject(s)
Environmental Monitoring , Food Contamination/analysis , Fruit/chemistry , Perchlorates/analysis , Vegetables/chemistry , Soil/chemistry , Soil Pollutants/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
3.
Ecotoxicol Environ Saf ; 133: 316-26, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27485373

ABSTRACT

Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+).


Subject(s)
Blueberry Plants/drug effects , Cadmium/toxicity , Oxidative Stress/drug effects , Phenols/metabolism , Antioxidants/pharmacology , Biphenyl Compounds , Drug Administration Schedule , Hydrogen Peroxide/pharmacology , Malondialdehyde/metabolism , Oxidation-Reduction , Picrates , Soil Pollutants/chemistry , Soil Pollutants/toxicity
4.
Arch Environ Contam Toxicol ; 66(2): 155-61, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24165784

ABSTRACT

Perchlorate is an anion that originates as a contaminant in ground and surface waters. The presence of perchlorate in soil and water samples from northern Chile (Atacama Desert) was investigated by ion chromatography-electrospray mass spectrometry. Results indicated that perchlorate was found in five of seven soils (cultivated and uncultivated) ranging from 290 ± 1 to 2,565 ± 2 µg/kg. The greatest concentration of perchlorate was detected in Humberstone soil (2,565 ± 2 µg/kg) associated with nitrate deposits. Perchlorate levels in Chilean soils are greater than those reported for uncultivated soils in the United States. Perchlorate was also found in superficial running water ranging from 744 ± 0.01 to 1,480 ± 0.02 µg/L. Perchlorate water concentration is 30-60 times greater than levels established by the United States Environmental Protection Agency (24.5 µg/L) for drinking.


Subject(s)
Perchlorates/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Chile , Desert Climate , Fresh Water/chemistry
5.
J Environ Qual ; 38(4): 1449-57, 2009.
Article in English | MEDLINE | ID: mdl-19465720

ABSTRACT

Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate that may become highly polluted over time due to intensive agronomic uses.


Subject(s)
Glycine/analogs & derivatives , Soil Pollutants/chemistry , Volcanic Eruptions , Adsorption , Glycine/chemistry , Hydrogen-Ion Concentration , Kinetics , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...