Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Appl Opt ; 40(16): 2736-46, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-18357291

ABSTRACT

High-performance polymer microlens arrays were fabricated by means of withdrawing substrates of patterned wettability from a monomer solution. The f-number (f(#)) of formed microlenses was controlled by adjustment of monomer viscosity and surface tension, substrate dipping angle and withdrawal speed, the array fill factor, and the number of dip coats used. An optimum withdrawal speed was identified at which f(#) was minimized and array uniformity was maximized. At this optimum, arrays of f/3.48 microlenses were fabricated with one dip coat with uniformity of better than Deltaf/f +/- 3.8%. Multiple dip coats allowed for production of f/1.38 lens arrays and uniformity of better than Deltaf/f +/-5.9%. Average f(#)s were reproducible to within 3.5%. A model was developed to describe the fluid-transfer process by which monomer solution assembles on the hydrophilic domains. The model agrees well with experimental trends.

3.
Opt Lett ; 25(13): 975-7, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-18064245

ABSTRACT

We report a means of fabricating hydrophilic domains in a hydrophobic background by lithographically patterning an adhesive hydrophobic layer. Polymer microlenses were fabricated on these substrates by use of a dip-coating technique. Various lens shapes (circular, elliptical, square) were fabricated on a variety of substrates (SiO(2), SiN, GaAs, InP, etc.), ranging in size from 2 to 500 microm in diameter, with fill factors of up to 90%. Plano-convex and double-convex lenses were fabricated, with f-numbers as low as 1.38 and 1.2, respectively. Optimum lens surfaces deviated from spherical by just +/-5 nm . The lenses are stable at room temperature and exhibit minimal degradation after 24 h at 105 degrees C. The transfer of these polymer lenses to an underlying substrate was also demonstrated.

4.
Opt Lett ; 25(17): 1285-7, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-18066194

ABSTRACT

We describe a novel electrochemical technique for the nonlithographic, fluidic pick-and-place assembly of optoelectronic devices by electrical and optical addressing. An electrochemical cell was developed that consists of indium tin oxide (ITO) and n -type silicon substrates as the two electrode materials and deionized water (R = 18 MOmega) as the electrolytic medium between the two electrodes. 0.8-20-microm-diameter negatively charged polystyrene beads, 50-100-microm-diameter SiO(2) pucks, and 50-microm LED's were successfully integrated upon a patterned silicon substrate by electrical addressing. In addition, 0.8-microm-diameter beads were integrated upon a homogeneous silicon substrate by optical addressing. This method can be applied to massively parallel assembly (>1000 x 1000 arrays) of multiple types of devices (of a wide size range) with very fast (a few seconds) and accurate positioning.

5.
Appl Opt ; 39(11): 1826-34, 2000 Apr 10.
Article in English | MEDLINE | ID: mdl-18345079

ABSTRACT

We propose a new, to our knowledge, monolithic multilayer optical storage medium in which data may be stored through the diffusional redistribution of fluorescent molecules within a polymer host. The active portion of the medium consists of a photopolymer doped with a fluorescent dye that is polymerized at the focal point of a high-numerical-aperture lens. We believe that as fluorescent molecules bond to the polymer matrix they become more highly concentrated in the polymerized regions, resulting in the modulated data pattern. Since data readout is based on detection of fluorescence rather than index modulation as in other photopolymer-based memories, the problems of media shrinkage and optical scatter are of less concern. An intensity threshold observed in the recording response of this material due to the presence of inhibitor molecules in the photopolymer allows for the three-dimensional confinement of recorded bits and therefore multilayer recording. The nonlinear recording characteristics of this material were investigated through a simple model of photopolymerization and diffusion and verified experimentally. Both single-layer and multilayer recordings were demonstrated.

6.
Appl Opt ; 39(11): 1835-41, 2000 Apr 10.
Article in English | MEDLINE | ID: mdl-18345080

ABSTRACT

The requirements and limitations on the use of a volume holographic element for the simultaneous optical stamping of multilayer data into a three-dimensional (3D) bit-oriented material that exhibits a suitable sensitivity threshold are investigated. The expected performance of such a holographic stamping element is examined through a model of the coherent noise effects that result from the interference of the many data layers with one another. We show that higher signal-to-noise values may be achieved through the use of semicoherent light during the readout of the hologram. The main limitations to this technique arise from the bandwidth requirements on the holographic element, the degree of nonlinearity required of the bit-oriented media, and the tolerance requirements for the optical exposure levels. As a demonstration of the concept, a two-layer stamping element is fabricated and used to simultaneously stamp two layers of data into a 3D dye-doped photopolymer storage medium.

7.
Appl Opt ; 39(20): 3516-24, 2000 Jul 10.
Article in English | MEDLINE | ID: mdl-18349922

ABSTRACT

A parallel data-communication scheme is described for interchip communication with free-space optics. We present a proof-of-concept and feasibility demonstration of a practical modular packaging approach in which free-space optical interconnect modules can be simply integrated on top of an electronic multichip module (MCM). Our packaging architecture is based on a modified folded 4-f imaging system that is implemented with off-the-shelf optics, conventional electronic packaging techniques, and passive assembly techniques to yield a potentially low-cost packaging solution. The prototype system, as built, supports 48 independent free-space channels with eight separate laser and detector chips, in which each chip consists of a one-dimensional array of 12 devices. All chips are assembled on a single ceramic carrier together with three silicon complementary metal-oxide semiconductor chips. Parallel optoelectronic (OE) free-space interconnections are demonstrated at a speed of 200 MHz. The system is compact at only 10 in.(3) (~164 cm(3)) and is scalable because it can easily accommodate additional chips as well as two-dimensional OE device arrays for increased interconnection density.

8.
Appl Opt ; 39(26): 4834-41, 2000 Sep 10.
Article in English | MEDLINE | ID: mdl-18350076

ABSTRACT

A diffraction-based beam-propagation model is used to study optical cross talk in microbeam free-space optical interconnection (FSOI) systems. The system consists of VCSEL's, microlenses, and metal-semiconductor-metal (MSM) detectors, with the detectors modeled as amplitude gratings with low contrast ratio (based on experimental results). Different possible cross-talk sources are studied. Results show that, in an optimized system, the cross talk caused by diffractive scattering is not an issue. However, in such systems the principal reflection from a MSM detector surface creates two problems: VCSEL coupling and ghost talk. The coupling of the reflected beam into the VCSEL's may cause power oscillation (and increase the bit error rate), whereas ghost talk will limit the distance-bandwidth product of the interconnect system. This optical system is also abstracted in hspice together with the laser driver and receiver circuits to analyze ghost talk in this system. Results show that at high speed (1 Gbit/s or more) these effects negatively affect system performance.

9.
Appl Opt ; 38(26): 5631-40, 1999 Sep 10.
Article in English | MEDLINE | ID: mdl-18324074

ABSTRACT

We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI's) can be integrated simply on electronic multichip modules (MCM's) for intra-MCM-board interconnects. Our system-level packaging architecture is based on a modified folded 4f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than -20 dB at low frequency have been measured. The system is compact at only 10 in.3 (25.4 cm3) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

10.
Article in English | MEDLINE | ID: mdl-18244266

ABSTRACT

Lead lanthanum zirconate titanate (PLZT) thin films were deposited on r-plane sapphire at low temperatures by RF triode magnetron sputtering using lead compensated hot-pressed targets. To obtain fully perovskite phase in the films, two types of post-deposition processing were investigated: rapid thermal annealing (RTA) and furnace annealing (FA). Dielectric and electro-optic properties of PLZT films were found to be strongly dependent on annealing conditions. The peak dielectric constant of the films were 1200 and 2800 with Curie temperatures of 110 degrees C and 190 degrees C after RTA and FA processing, respectively. The dielectric losses in the films were fairly low; tan deltas were less than 0.02 after RTA and less than 0.04 after FA processing. The films showed good optical transmission characteristics after annealing and an anomalously large effective quadratic electro-optic effect was observed in one furnace annealed film.

11.
Appl Opt ; 37(2): 205-27, 1998 Jan 10.
Article in English | MEDLINE | ID: mdl-18268578

ABSTRACT

We model and compare on-chip (up to wafer scale) and off-chip(multichip module) high-speed electrical interconnections withfree-space optical interconnections in terms of speed performance andenergy requirements for digital transmission in large-scalesystems. For all technologies the interconnections are firstmodeled and optimized for minimum delay as functions of theinterconnection length for both one-to-one and fan-outconnections. Then energy requirements are derived as functions ofthe interconnection length. Free-space optical interconnectionsthat use multiple-quantum-well modulators or vertical-cavitysurface-emitting lasers as transmitters are shown to offer aspeed-energy product advantage as high as 30 over that of the electrical interconnection technologies.

12.
Appl Opt ; 37(26): 6136-9, 1998 Sep 10.
Article in English | MEDLINE | ID: mdl-18286110

ABSTRACT

Passive electrical circuits whose voltage and current equations are exactly equivalent to the small-signal rate equations of a semiconductor laser are derived to model an electrically modulated laser (verified to be the same as that given in the literature), an optically modulated laser (i.e., a laser used as an optical amplifier), and a multimode laser. These circuits offer a fast and efficient simulation tool with little computational complexity in which the small-signal assumption (i.e., small modulation range) is neither violated nor insufficient for the simulation.

13.
Appl Opt ; 37(26): 6178-81, 1998 Sep 10.
Article in English | MEDLINE | ID: mdl-18286116

ABSTRACT

A photorefractive beam splitter (PRBS) is introduced as an alternative to a polarizing beam splitter (PBS) for coupling optical power into reflective modulators in a free-space optical interconnection system. The PRBS uses a single diffraction grating recorded in a photorefractive material to redirect the incident laser light into the first diffraction order and onto the modulators. Reflected interconnection light not matching the Bragg angle criteria transmits uncoupled through the beam splitter. Experimental results show that the PRBS provides better, more uniform transmission for off-axis beams than the currently used PBS.

14.
Appl Opt ; 36(17): 3877-88, 1997 Jun 10.
Article in English | MEDLINE | ID: mdl-18253414

ABSTRACT

Memory bandwidth is a bottleneck for very large database machines. Parallel-access three-dimensional two-photon memories have the potential of achieving enormous throughput (>100 Gbit/s) and capacity (1 Tbit/cm(3)) [Appl. Opt. 29, 2058 (1990)] and, consequently, are well suited for this application. Our analysis shows that some operations can be completed more than 2 orders of magnitude faster with this type of memory than with a system based on serial-access storage. These particular memories have a further feature of being accessible in orthogonal directions. We show that this property, used in conjunction with a three-dimensional data-organization scheme designed for this approach, leads to improved performance by permitting the user a choice of accessing strategies for a given operation.

15.
Opt Lett ; 22(8): 558-60, 1997 Apr 15.
Article in English | MEDLINE | ID: mdl-18183266

ABSTRACT

We demonstrate the recording of 100 planes of digital images in a page-oriented two-photon memory and characterize the images in terms of signal-to-noise ratio and bit error rate. Possible error sources in the recording are discussed, and methods for compensating for some of these effects are presented. Looking at the distributions of the normalized bit intensities, we are able to estimate the minimum achievable bit error rate for this system.

16.
Appl Opt ; 35(32): 6320-30, 1996 Nov 10.
Article in English | MEDLINE | ID: mdl-21127657

ABSTRACT

Fuzzy inference is a method of reasoning with imprecise information. The mathematical operations of fuzzy inference can be stated in terms of generalized vector algebra, in which multiplication and summation are generalized to min and max operations. An optoelectronic H-tree architecture is ideally suited to perform these generalized vector operations in parallel and requires only a simple imaging optical interconnection. Appropriate data encodings and electronic circuitry permit large scale, pipelined systems.

17.
Appl Opt ; 34(17): 3103-15, 1995 Jun 10.
Article in English | MEDLINE | ID: mdl-21052466

ABSTRACT

We investigate the performance of free-space optical interconnection systems at the technology level. Specifically, three optical transmitter technologies, lead-lanthanum-zirconate-titanate and multiple-quantum-well modulators and vertical-cavity surface-emitting lasers, are evaluated. System performance is measured in terms of the achievable areal data throughput and the energy required per transmitted bit. It is shown that lead-lanthanum-zirconate-titanate modulator and vertical-cavity surface-emitting laser technologies are well suited for applications in which a large fan-out per transmitter is required but the total number of transmitters is relatively small. Multiple-quantum-well modulators, however, are good candidates for applications in which many transmitters with a limited fan-out are needed.

18.
Appl Opt ; 34(32): 7604-7, 1995 Nov 10.
Article in English | MEDLINE | ID: mdl-21060638

ABSTRACT

The motionless-head parallel-readout optical-disk system is designed to read out two-dimensional bit planes that are stored as one-dimensional Fourier-transform computer-generated holograms distributed radially on the disk active surface. Such a system, when built at full scale, could offer several potential advantages: high data-transfer rates of 1 Gbyte/s and higher, low access times of less than 15 ms, low retrieval times (the time required to read the entire memory) of less than 25 ms, and simple optical implementation. The experimental results of a scaled-down implementation of the system are presented.

19.
Appl Opt ; 34(32): 7621-38, 1995 Nov 10.
Article in English | MEDLINE | ID: mdl-21060641

ABSTRACT

We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 × 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

20.
Opt Lett ; 19(9): 661-3, 1994 May 01.
Article in English | MEDLINE | ID: mdl-19844405

ABSTRACT

The data density that can be resolved in optical memories is limited by the inherent band-limited nature of optical systems. We show how a precoding technique used in serial communications, called partial response precoding, can be applied to parallel readout optical memories to precompensate for the spatial data broadening that occurs as result of this band limiting. We experimentally demonstrate a factor-of-15 improvement in average worst-case contrast ratio and an order-of-magnitude improvement in average contrast ratio. Over 50% more area was needed to achieve the same contrast ratio in a system without precoding.

SELECTION OF CITATIONS
SEARCH DETAIL
...