Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36672732

ABSTRACT

Cancer is one of the main causes of death worldwide. There are several different types of cancer recognized thus far, which can be treated by different approaches including surgery, radiotherapy, chemotherapy or a combination thereof. However, these approaches have certain drawbacks and limitations. Photodynamic therapy (PDT) is regarded as an alternative noninvasive approach for cancer treatment based on the generation of toxic oxygen (known as reactive oxygen species (ROS)) at the treatment site. PDT requires photoactivation by a photosensitizer (PS) at a specific wavelength (λ) of light in the vicinity of molecular oxygen (singlet oxygen). The cell death mechanisms adopted in PDT upon PS photoactivation are necrosis, apoptosis and stimulation of the immune system. Over the past few decades, the use of natural compounds as a photoactive agent for the selective eradication of neoplastic lesions has attracted researchers' attention. Many reviews have focused on the PS cell death mode of action and photonanomedicine approaches for PDT, while limited attention has been paid to the photoactivation of phytocompounds. Photoactivation is ever-present in nature and also found in natural plant compounds. The availability of various laser light setups can play a vital role in the discovery of photoactive phytocompounds that can be used as a natural PS. Exploring phytocompounds for their photoactive properties could reveal novel natural compounds that can be used as a PS in future pharmaceutical research. In this review, we highlight the current research regarding several photoactive phytocompound classes (furanocoumarins, alkaloids, poly-acetylenes and thiophenes, curcumins, flavonoids, anthraquinones, and natural extracts) and their photoactive potential to encourage researchers to focus on studies of natural agents and their use as a potent PS to enhance the efficiency of PDT.

2.
Curr Drug Deliv ; 19(10): 1001-1011, 2022.
Article in English | MEDLINE | ID: mdl-35331111

ABSTRACT

BACKGROUND: Lipid nanocarriers have great potential for the encapsulation and delivery of numerous bioactive compounds. They have demonstrated significant benefits over traditional disease management and conventional therapy. The benefits associated with the particular properties of lipid nanocarriers include site-specific drug deposition, improved pharmacokinetics and pharmacodynamics, enhanced internalization and intracellular transport, biodegradability, and decreased biodistribution. These properties result in the alleviation of the harmful consequences of conventional treatment protocols. MATERIALS & METHODS: The administration of various bioactive molecules has been extensively investigated using nanostructured lipid carriers. In this article, theranostic applications of novel formulations of lipid nanocarriers combined or complexed with quantum dots, certain polymers, such as chitosan, and metallic nanoparticles (particularly gold) are reviewed. These formulations have demonstrated better controlled release features, improved drug loading capability, as well as a lower burst release rate. As a recent innovation in drug delivery, tocosomes and their unique advantages are also explained in the final section of this review. RESULTS AND CONCLUSION: Theranostic medicine requires nanocarriers with improved target-specific accumulation and bio-distribution. To this end, lipid-based nanocarrier systems and tocosomes combined with unique properties of quantum dots, biocompatible polymers, and metallic nanoparticles seem to be ideal candidates to be considered for safe and efficient drug delivery.


Subject(s)
Nanoparticles , Quantum Dots , Drug Carriers , Drug Delivery Systems , Lipids , Polymers , Precision Medicine , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...