Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 167, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167821

ABSTRACT

Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.


Subject(s)
Pluripotent Stem Cells , Semen , Humans , Male , Germ Cells/metabolism , Cell Line , Signal Transduction , Cell Differentiation
2.
Cell Stem Cell ; 29(9): 1402-1419.e8, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055194

ABSTRACT

Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points. Molecular maps of lineage diversifications from the pluripotent human epiblast toward the amniotic ectoderm, primitive streak/mesoderm, and primordial germ cells were constructed and compared with in vivo primate data. The comparative transcriptome analyses reveal a critical role of NODAL signaling in human mesoderm and primordial germ cell specification, which is further functionally validated. Through comparative transcriptome analyses and validations with human blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.


Subject(s)
Germ Layers , Single-Cell Analysis , Animals , Blastocyst , Cell Lineage , Ectoderm , Embryo, Mammalian , Humans
3.
Nano Today ; 412021 Dec.
Article in English | MEDLINE | ID: mdl-34745321

ABSTRACT

Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.

4.
Integr Biol (Camb) ; 13(9): 221-229, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34327532

ABSTRACT

The human embryo is a complex structure that emerges and develops as a result of cell-level decisions guided by both intrinsic genetic programs and cell-cell interactions. Given limited accessibility and associated ethical constraints of human embryonic tissue samples, researchers have turned to the use of human stem cells to generate embryo models to study specific embryogenic developmental steps. However, to study complex self-organizing developmental events using embryo models, there is a need for computational and imaging tools for detailed characterization of cell-level dynamics at the single cell level. In this work, we obtained live cell imaging data from a human pluripotent stem cell (hPSC)-based epiblast model that can recapitulate the lumenal epiblast cyst formation soon after implantation of the human blastocyst. By processing imaging data with a Python pipeline that incorporates both cell tracking and event recognition with the use of a CNN-LSTM machine learning model, we obtained detailed temporal information of changes in cell state and neighborhood during the dynamic growth and morphogenesis of lumenal hPSC cysts. The use of this tool combined with reporter lines for cell types of interest will drive future mechanistic studies of hPSC fate specification in embryo models and will advance our understanding of how cell-level decisions lead to global organization and emergent phenomena. Insight, innovation, integration: Human pluripotent stem cells (hPSCs) have been successfully used to model and understand cellular events that take place during human embryogenesis. Understanding how cell-cell and cell-environment interactions guide cell actions within a hPSC-based embryo model is a key step in elucidating the mechanisms driving system-level embryonic patterning and growth. In this work, we present a robust video analysis pipeline that incorporates the use of machine learning methods to fully characterize the process of hPSC self-organization into lumenal cysts to mimic the lumenal epiblast cyst formation soon after implantation of the human blastocyst. This pipeline will be a useful tool for understanding cellular mechanisms underlying key embryogenic events in embryo models.


Subject(s)
Germ Layers , Pluripotent Stem Cells , Cell Differentiation , Embryonic Development , Humans , Machine Learning
5.
Front Cell Dev Biol ; 8: 588941, 2020.
Article in English | MEDLINE | ID: mdl-33178701

ABSTRACT

Neural rosettes (NPC rosettes) are radially arranged groups of cells surrounding a central lumen that arise stochastically in monolayer cultures of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPC). Since NPC rosette formation is thought to mimic cell behavior in the early neural tube, these rosettes represent important in vitro models for the study of neural tube morphogenesis. However, using current protocols, NPC rosette formation is not synchronized and results are inconsistent among different hPSC lines, hindering quantitative mechanistic analyses and challenging live cell imaging. Here, we report a rapid and robust protocol to induce rosette formation within 6 h after evenly-sized "colonies" of NPC are generated through physical cutting of uniformly polarized NESTIN+/PAX6+/PAX3+/DACH1+ NPC monolayers. These NPC rosettes show apically polarized lumens studded with primary cilia. Using this assay, we demonstrate reduced lumenal size in the absence of PODXL, an important apical determinant recently identified as a candidate gene for juvenile Parkinsonism. Interestingly, time lapse imaging reveals that, in addition to radial organization and apical lumen formation, cells within cut NPC colonies initiate rapid basally-driven spreading. Further, using chemical, genetic and biomechanical tools, we show that NPC rosette morphogenesis requires this basal spreading activity and that spreading is tightly regulated by Rho/ROCK signaling. This robust and quantitative NPC rosette platform provides a sensitive system for the further investigation of cellular and molecular mechanisms underlying NPC rosette morphogenesis.

6.
Nature ; 573(7774): 421-425, 2019 09.
Article in English | MEDLINE | ID: mdl-31511693

ABSTRACT

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.


Subject(s)
Amnion/embryology , Germ Layers/embryology , Models, Biological , Pluripotent Stem Cells/cytology , Amnion/cytology , Cell Differentiation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , Germ Layers/cytology , Humans , Pregnancy , Primitive Streak/cytology
7.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 870-888, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770965

ABSTRACT

Metallic alloys have been introduced as biodegradable metals for various biomedical applications over the last decade owing to their gradual corrosion in the body, biocompatibility and superior strength compared to biodegradable polymers. Mg alloys possess advantageous properties that make them the most extensively studied biodegradable metallic material for orthopedic applications such as their low density, modulus of elasticity, close to that of the bone, and resorbability. Early resorption (i.e., <3months) and relatively inadequate strength are the main challenges that hinder the use of Mg alloys for bone fixation applications. The development of resorbable Mg-based bone fixation hardware with superior mechanical and corrosion performance requires a thorough understanding of the physical and mechanical properties of Mg alloys. This paper discusses the characteristics of successful Mg-based skeletal fixation hardware and the possible ways to improve its properties using different methods such as mechanical and heat treatment processes. We also review the most recent work pertaining to Mg alloys and surface coatings. To this end, this paper covers (i) the properties and development of Mg alloys and coatings with an emphasis on the Mg-Zn-Ca-based alloys; (ii) Mg alloys fabrication techniques; and (iii) strategies towards achieving Mg-based, resorbable, skeletal fixation devices.


Subject(s)
Alloys/pharmacology , Bone Resorption/pathology , Bone and Bones/drug effects , Materials Testing/methods , Coated Materials, Biocompatible/pharmacology , Magnesium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...