Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Biomed Pharmacother ; 172: 116234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325264

ABSTRACT

Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.


Subject(s)
Anticonvulsants , Berberine Alkaloids , Epilepsy , Mice , Animals , Anticonvulsants/adverse effects , Zebrafish , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/drug therapy , Pentylenetetrazole/pharmacology
2.
ACS Chem Neurosci ; 15(3): 617-628, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270158

ABSTRACT

Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant Securidaca longepedunculata is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities. This study explores the potential in vivo inhibition of seizure-like paroxysms and toxicity effects of dichloromethane (DCM) and ethanol (EtOH) extracts, as well as isolated xanthones and benzoates of S. longepedunculata. Ten phenolic compounds were isolated from the DCM extract. All of the substances were identified by nuclear magnetic resonance spectroscopy. Assays for toxicity and inhibition of pentylenetetrazole (PTZ)-induced seizure-like paroxysms were performed in zebrafish larvae. Among the compounds assessed in the assay for maximum tolerated concentration (MTC), benzyl-2-hydroxy-6-methoxy-benzoate (MTC 12.5 µM), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (MTC 25 µM), and 1,7-dihydroxy-4-methoxyxanthone (MTC 6.25 µM) were the most toxic. The DCM extract, 1,7-dihydroxy-4-methoxyxanthone and 2-hydroxy-1,7-dimethoxyxanthone displayed the most significant inhibition of paroxysms by altering the locomotor behavior in GABAA receptor antagonist, PTZ, which induced seizures in larval zebrafish. The EtOH extract, benzyl benzoate, and benzyl-2-hydroxy-6-methoxy-benzoate unexpectedly increased locomotor activity in treated larval zebrafish and decreased locomotor activity in nontreated larval zebrafish, seemingly due to paradoxical excitation. The results reveal promising medicinal activities of this plant, contributing to our understanding of its use as an antiepileptic drug. It also shows us the presence of potentially new lead compounds for future drug development.


Subject(s)
Epilepsy , Securidaca , Animals , Zebrafish , Securidaca/chemistry , Seizures/drug therapy , Anticonvulsants/pharmacology , Epilepsy/drug therapy , Plant Extracts/chemistry , Pentylenetetrazole , Benzoates/adverse effects
3.
J Ethnopharmacol ; 317: 116740, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37315641

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM: In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS: Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS: A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS: The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.


Subject(s)
Biological Products , Cannabidiol , Drug Resistant Epilepsy , Epilepsy , Plants, Medicinal , Animals , Humans , Ethnopharmacology , Biological Products/therapeutic use , Epilepsy/drug therapy , Epilepsy/metabolism , Anticonvulsants/pharmacology , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Drug Resistant Epilepsy/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Evidence-Based Medicine
4.
Cell Mol Life Sci ; 80(5): 133, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185787

ABSTRACT

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.


Subject(s)
Epilepsy , Pentylenetetrazole , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Epilepsy/chemically induced , Epilepsy/genetics , Epilepsy/metabolism , Hippocampus/metabolism , Mice, Knockout , Pentylenetetrazole/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Zebrafish/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768918

ABSTRACT

Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 µg/mL and 100 µg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 µM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.


Subject(s)
Epilepsy , Pentylenetetrazole , Animals , Anticonvulsants/toxicity , Disease Models, Animal , Epilepsy/drug therapy , Pentylenetetrazole/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Zebrafish
6.
J Med Chem ; 65(17): 11703-11725, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35984707

ABSTRACT

(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.


Subject(s)
Anticonvulsants , Epilepsy , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , Mice , Molecular Docking Simulation , Pentylenetetrazole , Seizures/chemically induced , Seizures/drug therapy
7.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Article in English | MEDLINE | ID: mdl-35551471

ABSTRACT

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Seizures, Febrile , Zebrafish Proteins/metabolism , Animals , Epilepsy/genetics , Epilepsy, Temporal Lobe/genetics , Genomics , Gliosis/pathology , Hippocampus/pathology , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sclerosis/pathology , Seizures, Febrile/complications , Seizures, Febrile/genetics , Zebrafish
8.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215359

ABSTRACT

PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin's antiseizure action.

9.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299361

ABSTRACT

Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.


Subject(s)
Anticonvulsants/pharmacology , Catechols/pharmacology , Fatty Alcohols/pharmacology , Pentylenetetrazole/pharmacology , Plant Extracts/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Zingiber officinale/chemistry , Animals , Brain/drug effects , Brain/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Larva/drug effects , Larva/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/metabolism , Zebrafish , gamma-Aminobutyric Acid/metabolism
10.
Mol Neurobiol ; 58(2): 877-894, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33057948

ABSTRACT

Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.


Subject(s)
Behavior, Animal , Calcium Channels, L-Type/genetics , Mutation/genetics , Schizophrenia/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Alleles , Animals , Calcium Channels, L-Type/metabolism , Darkness , Disease Models, Animal , Electroencephalography , Genotype , Heterozygote , Larva/genetics , Motor Activity , Prepulse Inhibition , RNA Splice Sites/genetics , Reflex, Startle , Schizophrenia/physiopathology , Time Factors , Zebrafish Proteins/metabolism
11.
J Vis Exp ; (161)2020 07 02.
Article in English | MEDLINE | ID: mdl-32716380

ABSTRACT

While there is an abundance of commercial and standardized automated systems and software for performing the prepulse inhibition (PPI) assay in rodents, to the best of our knowledge, all PPI assays performed in the zebrafish have, until now, been done using custom made systems which were only available to individual groups. This has thereby presented challenges, particularly with regard to issues of data reproducibility and standardization. In the present work, we generated a protocol that utilizes commercially available automated systems to pharmacologically validate the PPI assay in larval zebrafish. Consistent with published findings, we were able to replicate the results of apomorphine, haloperidol and ketamine on the PPI response of 6 days post-fertilization zebrafish larvae.


Subject(s)
Larva/drug effects , Prepulse Inhibition/drug effects , Reflex, Startle/physiology , Animals , Male , Reproducibility of Results , Zebrafish
12.
Neurosci Biobehav Rev ; 116: 1-20, 2020 09.
Article in English | MEDLINE | ID: mdl-32544542

ABSTRACT

Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.


Subject(s)
Epilepsy , Zebrafish , Animals , Disease Models, Animal , Epilepsy/genetics , Seizures
13.
Cells ; 9(5)2020 05 16.
Article in English | MEDLINE | ID: mdl-32429356

ABSTRACT

Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound. Both alkaloids were isolated from the methanolic root extract of Berberis sibirica by counter-current chromatography, and their ability to cross the blood-brain barrier was determined via quantitative structure-activity relationship assay. PALM exerted antiseizure activity, as confirmed by electroencephalographic analysis, and decreased c-fos and bdnf levels in PTZ-treated larvae. In a behavioral assay, PALM dose-dependently decreased PTZ-induced hyperlocomotion. The combination of PALM and BERB in ED16 doses revealed hyperadditive activity towards PTZ-induced hyperlocomotion. Notably, we have indicated that both alkaloids may exert their anticonvulsant activity through different mechanisms of action. Additionally, the combination of both alkaloids in a 1:2.17 ratio (PALM: BERB) mimicked the activity of the pure extract, which indicates that these two active compounds are responsible for its anticonvulsive activity. In conclusion, our study reveals for the first time the anticonvulsant activity of PALM and suggests the combination of PALM and BERB may have higher therapeutic value than separate usage of these compounds.


Subject(s)
Berberine Alkaloids/therapeutic use , Berberis/chemistry , Pentylenetetrazole/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Animals , Behavior, Animal/drug effects , Berberine/chemistry , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Blood-Brain Barrier/pathology , Brain-Derived Neurotrophic Factor/metabolism , Electroencephalography , Larva/drug effects , Locomotion/drug effects , Pentylenetetrazole/pharmacology , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Quantitative Structure-Activity Relationship , Zebrafish
14.
Epilepsia ; 61(3): 549-560, 2020 03.
Article in English | MEDLINE | ID: mdl-32096222

ABSTRACT

OBJECTIVE: To pinpoint the earliest cellular defects underlying seizure onset (epileptogenic period) during perinatal brain development in a new zebrafish model of Dravet syndrome (DS) and to investigate potential disease-modifying activity of the 5HT2 receptor agonist fenfluramine. METHODS: We used CRISPR/Cas9 mutagenesis to introduce a missense mutation, designed to perturb ion transport function in all channel isoforms, into scn1lab, the zebrafish orthologue of SCN1A (encoding voltage-gated sodium channel alpha subunit 1). We performed behavioral analysis and electroencephalographic recordings to measure convulsions and epileptiform discharges, followed by single-cell RNA-Seq, morphometric analysis of transgenic reporter-labeled γ-aminobutyric acidergic (GABAergic) neurons, and pharmacological profiling of mutant larvae. RESULTS: Homozygous mutant (scn1labmut/mut ) larvae displayed spontaneous seizures with interictal, preictal, and ictal discharges (mean = 7.5 per 20-minute recording; P < .0001; one-way analysis of variance). Drop-Seq analysis revealed a 2:1 shift in the ratio of glutamatergic to GABAergic neurons in scn1labmut/mut larval brains versus wild type (WT), with dynamic changes in neuronal, glial, and progenitor cell populations. To explore disease pathophysiology further, we quantified dendritic arborization in GABAergic neurons and observed a 40% reduction in arbor number compared to WT (P < .001; n = 15 mutant, n = 16 WT). We postulate that the significant reduction in inhibitory arbors causes an inhibitory to excitatory neurotransmitter imbalance that contributes to seizures and enhanced electrical brain activity in scn1labmut/mut larvae (high-frequency range), with subsequent GABAergic neuronal loss and astrogliosis. Chronic fenfluramine administration completely restored dendritic arbor numbers to normal in scn1labmut/mut larvae, whereas similar treatment with the benzodiazepine diazepam attenuated seizures, but was ineffective in restoring neuronal cytoarchitecture. BrdU labeling revealed cell overproliferation in scn1labmut/mut larval brains that were rescued by fenfluramine but not diazepam. SIGNIFICANCE: Our findings provide novel insights into early mechanisms of DS pathogenesis, describe dynamic cell population changes in the scn1labmut/mut brain, and present first-time evidence for potential disease modification by fenfluramine.


Subject(s)
Brain/physiopathology , Epilepsies, Myoclonic/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neuronal Plasticity/genetics , Zebrafish Proteins/genetics , Animals , Anticonvulsants/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , CRISPR-Cas Systems , Cell Proliferation/drug effects , Diazepam/pharmacology , Disease Models, Animal , Electroencephalography , Epilepsies, Myoclonic/metabolism , Epilepsies, Myoclonic/pathology , Epilepsies, Myoclonic/physiopathology , Fenfluramine/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Gene Expression Profiling , Gliosis/genetics , Gliosis/pathology , Locomotion/drug effects , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Neuronal Plasticity/drug effects , RNA-Seq , Real-Time Polymerase Chain Reaction , Serotonin 5-HT2 Receptor Agonists/pharmacology , Single-Cell Analysis , Zebrafish , Zebrafish Proteins/metabolism
15.
Mol Neurobiol ; 57(4): 1904-1916, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31875924

ABSTRACT

The CACNA1A gene encodes the pore-forming α1 subunit of voltage-gated P/Q type Ca2+ channels (Cav2.1). Mutations in this gene, among others, have been described in patients and rodents suffering from absence seizures and episodic ataxia type 2 with/without concomitant seizures. In this study, we aimed for the first time to assess phenotypic and behavioral alterations in larval zebrafish with partial cacna1aa knockdown, placing special emphasis on changes in epileptiform-like electrographic discharges in larval brains. Whole-mount in situ hybridization analysis revealed expression of cacna1aa in the optic tectum and medulla oblongata of larval zebrafish at 4 and 5 days post-fertilization. Next, microinjection of two antisense morpholino oligomers (individually or in combination) targeting all splice variants of cacna1aa into fertilized zebrafish eggs resulted in dose-dependent mortality and decreased or absent touch response. Over 90% knockdown of cacna1aa on protein level induced epileptiform-like discharges in the optic tectum of larval zebrafish brains. Incubation of morphants with antiseizure drugs (sodium valproate, ethosuximide, lamotrigine, topiramate) significantly decreased the number and, in some cases, cumulative duration of epileptiform-like discharges. In this context, sodium valproate seemed to be the least effective. Carbamazepine did not affect the number and duration of epileptiform-like discharges. Altogether, our data indicate that cacna1aa loss-of-function zebrafish may be considered a new model of absence epilepsy and may prove useful both for the investigation of Cacna1a-mediated epileptogenesis and for in vivo drug screening.


Subject(s)
Calcium Channels/genetics , Gene Knockdown Techniques , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Behavior, Animal/drug effects , Brain/metabolism , Calcium Channels/metabolism , Electroencephalography , Gene Expression Regulation, Developmental/drug effects , Humans , Larva/genetics , Morpholinos/pharmacology , Motor Activity/drug effects , Phenotype , Touch , Zebrafish Proteins/metabolism
16.
Neurotherapeutics ; 17(1): 309-328, 2020 01.
Article in English | MEDLINE | ID: mdl-31486023

ABSTRACT

In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result, AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZ-induced seizures in mice. Thus, AS-1 may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 µM, as well as no hepatotoxic properties in HepG2 cells (concentration of 10 µM).


Subject(s)
Anticonvulsants/administration & dosage , Anticonvulsants/chemistry , Epilepsy/drug therapy , Seizures/drug therapy , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Epilepsy/chemically induced , Ethosuximide/chemistry , Lacosamide/chemistry , Levetiracetam/chemistry , Male , Mice , Pentylenetetrazole/administration & dosage , Pyrrolidines/administration & dosage , Pyrrolidines/chemistry , Seizures/chemically induced , Valproic Acid/administration & dosage , Zebrafish
17.
Epilepsia Open ; 4(4): 524-536, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31819908

ABSTRACT

Climate change is the biggest challenge facing humanity today. The associated global warming and humidification, increases in the severity and frequency of extreme climate events, extension of the ranges of vector-borne diseases, and the consequent social and economic stresses and disruption will have major negative consequences on many aspects of health care. People whose resilience to change is already impaired may suffer disproportionately from these environmental changes, which are of unprecedented reach and magnitude. There has been little connection made so far between climate change and epilepsy. We briefly review the history of climate change science and the subsequent response of the global scientific community. We consider how climate change effects might in general affect health and disease. We consider some of the underlying complex interactions that, for example, favor the spread of vector-borne diseases and how climate models operate and may help plan for global and local changes. We then speculate specifically on how these generic ideas may apply specifically to epilepsy. We consider these impacts at levels from molecular to the epidemiological. Data are sparse, and there is undoubtedly a need for more information to enable better estimation of possible effects of climate change on care in epilepsy. We also consider how the professional activities of those involved in epilepsy health care might contribute to global carbon emissions, for example, through flying for conference attendance. Healthcare organizations across the world are already considering, and responding to, many of these issues. We argue for more research in this area, but also for action today. Actions today are likely to generate cobenefits for health care, including care in epilepsy, resulting from efforts to decarbonize, mitigate effects of climate change that has already happened, and plan for adaptation to climate change.

18.
Mar Drugs ; 17(11)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731399

ABSTRACT

There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.


Subject(s)
Alkaloids/pharmacology , Benzofurans/pharmacology , Isoquinolines/pharmacology , Seizures/drug therapy , Zebrafish/metabolism , Animals , Anticonvulsants/pharmacology , Aspergillus/metabolism , Disease Models, Animal , Drug Resistance , Epilepsy/drug therapy , Larva/metabolism , Male , Mice , North Sea
19.
Neurosci Biobehav Rev ; 107: 6-22, 2019 12.
Article in English | MEDLINE | ID: mdl-31381931

ABSTRACT

Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.


Subject(s)
Disease Models, Animal , Schizophrenia , Zebrafish , Animals
20.
Dev Cell ; 49(4): 509-525.e12, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30982665

ABSTRACT

The clearance of damaged or dysfunctional mitochondria by selective autophagy (mitophagy) is important for cellular homeostasis and prevention of disease. Our understanding of the mitochondrial signals that trigger their recognition and targeting by mitophagy is limited. Here, we show that the mitochondrial matrix proteins 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and NIPSNAP2 accumulate on the mitochondria surface upon mitochondrial depolarization. There, they recruit proteins involved in selective autophagy, including autophagy receptors and ATG8 proteins, thereby functioning as an "eat me" signal for mitophagy. NIPSNAP1 and NIPSNAP2 have a redundant function in mitophagy and are predominantly expressed in different tissues. Zebrafish lacking a functional Nipsnap1 display reduced mitophagy in the brain and parkinsonian phenotypes, including loss of tyrosine hydroxylase (Th1)-positive dopaminergic (DA) neurons, reduced motor activity, and increased oxidative stress.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mitophagy/physiology , Zebrafish Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy/physiology , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins , Carrier Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism , Protein Binding , RNA-Binding Proteins/metabolism , Sequestosome-1 Protein/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...