Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cent Eur J Immunol ; 42(1): 54-67, 2017.
Article in English | MEDLINE | ID: mdl-28680331

ABSTRACT

OBJECTIVE: In orthopaedics, novel bioactive composites are largely needed to improve the synthetic achievement of the implants. In this work, semiconducting metal oxides such as SiO2, TiO2, and ZrO2 particles (Ps) were used individually and in different ratios to obtain different biphasic composites. The immunotoxicity of these composites was tested to inspect the potential toxicity prior to their use in further medical applications. MATERIALS AND METHODS: In vitro mineralisation ability was inspected by soaking the composites in simulated body fluid (SBF). Additionally, in vivo experiments were performed consuming male mice using ISSR-PCR, micronucleus (MN) test, comet assay, glutathione peroxidase activity, and determination of albumin, globulin, lymphocyte population, ALT, and AST levels. Several groups of adult male albino mice were treated with 100, 200, and 400 mg/kg body weight of SiO2, TiO2, and ZrO2-Ps in pure or mixed forms. RESULTS: Our findings revealed that treatment of mice with low and medium doses of SiO2, TiO2, and ZrO2-Ps in pure or mixed form revealed values relatively similar to the control group. However, using 400 mg/kg especially from TiO2-Ps in genuine form or mixed with SiO2 showed proliferation in the toxicity rates compared with the high dose of SiO2 and ZrO2-Ps. CONCLUSIONS: The results suggest that TiO2 composite induced in vivo toxicity, oxidative DNA damage, bargain of the antioxidant enzymes, and variations in the levels of albumin, globulin, lymphocyte population, ALT, and AST in a dose-dependent manner. However, SiO2, and ZrO2 composites revealed a lower toxicity in mice compared with that of TiO2.

2.
PLoS One ; 12(2): e0172684, 2017.
Article in English | MEDLINE | ID: mdl-28235061

ABSTRACT

The massive meat production of broiler chickens make them continuously exposed to potential stressors that stimulate releasing of stress-related hormones like corticosterone (CORT) which is responsible for specific pathways in biological mechanisms and physiological activities. Therefore, this research was conducted to evaluate a wide range of responses related to broiler performance, immune function, plasma biochemistry, related gene expressions and cell death morphology during and after a 7-day course of CORT injection. A total number of 200 one-day-old commercial Cobb broiler chicks were used in this study. From 21 to 28 d of age, broilers were randomly assigned to one of 2 groups with 5 replicates of 20 birds each; the first group received a daily intramuscular injection of 5 mg/kg BW corticosterone dissolved in 0.5 ml ethanol:saline solution (CORT group), while the second group received a daily intramuscular injection of 0.5 ml ethanol:saline only (CONT group). Growth performance, including body weight (BW), daily weight gain (DG), feed intake (FI) and feed conversion ratio (FC), were calculated at 0, 3 and 7 d after the start of the CORT injections. At the same times, blood samples were collected in each group for hematological (TWBC's and H/L ratio), T- and B-lymphocytes proliferation and plasma biochemical assays (total protein, TP; free triiodothyronine hormone, fT3; aspartate amino transaminase, AST; and alanine amino transaminase, ALT). The liver, thymus, bursa of Fabricius and spleen were dissected and weighed, and the mRNA expression of insulin-like growth factor 1 gene (IGF-1) in liver and cell-death-program gene (caspase-9) in bursa were analyzed for each group and time; while the apoptotic/necrotic cells were morphologically detected in the spleen. From 28 to 35 d of age, broilers were kept for recovery period without CORT injection and the same sampling and parameters were repeated at the end (at 14 d after initiation of the CORT injection). In general, all parameters of broiler performance were negatively affected by the CORT injection. In addition, CORT treatment decreased the plasma concentration of fT3 and the mRNA expression of hepatic IGF-1. A significant increase in liver weight accompanied by an increase in plasma TP, AST and ALT was observed with CORT treatment, indicating an incidence of liver malfunction by CORT. Moreover, the relative weights of thymus, bursa and spleen decreased by the CORT treatment with low counts of TWBC's and low stimulation of T & B cells while the H/L ratio increased; indicating immunosuppressive effect for CORT treatment. Furthermore, high expression of caspase-9 gene occurred in the bursa of CORT-treated chickens, however, it was associated with a high necrotic vs. low apoptotic cell death pathway in the spleen. Seven days after termination of the CORT treatment in broilers, most of these aspects remained negatively affected by CORT and did not recover to its normal status. The current study provides a comprehensive view of different physiological modulations in broiler chickens by CORT treatment and may set the potential means to mount a successful defense against stress in broilers and other animals as well.


Subject(s)
Avian Proteins/immunology , Chickens/immunology , Corticosterone/pharmacology , Gene Expression Regulation/drug effects , Meat , Alanine Transaminase/genetics , Alanine Transaminase/immunology , Animal Husbandry , Animals , Aspartate Aminotransferases/genetics , Aspartate Aminotransferases/immunology , Avian Proteins/genetics , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Bursa of Fabricius/drug effects , Bursa of Fabricius/immunology , Caspase 9/genetics , Caspase 9/immunology , Cell Death/drug effects , Cell Proliferation/drug effects , Chickens/growth & development , Eating/drug effects , Immunity, Innate/drug effects , Injections, Intramuscular , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/immunology , Liver/drug effects , Liver/immunology , Spleen/drug effects , Spleen/immunology , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Thymus Gland/drug effects , Thymus Gland/immunology , Triiodothyronine/genetics , Triiodothyronine/immunology , Weight Gain/drug effects
3.
PLoS One ; 11(6): e0158314, 2016.
Article in English | MEDLINE | ID: mdl-27347679

ABSTRACT

Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107 E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1ß and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These results were synchronized with activating cell death program since our data showed significant high expression of Bax gene by 2.8- and 2.7-fold and caspase-3 gene by 2.5- and 2.7-fold in the brain and liver tissues of infected chickens, respectively (P<0.05). In conclusion, the current study indicates that E. coli injection induces inflammatory physiological response and triggers cell death program in the brain and liver. Our results provide more understanding to endotoxic shock by E. coli in chickens at cellular level. Further studies are required to confirm if such responses are destructive or protective to set the means through which a chicken mounts a successful defense against avian pathogenic E. coli.


Subject(s)
DNA Damage , Escherichia coli Infections/veterinary , Escherichia coli/physiology , Gene Expression , Poultry Diseases/genetics , Poultry Diseases/microbiology , Animals , Biomarkers , Body Temperature , Cell Death/genetics , Chickens , Comet Assay , Corticosterone/blood , Stress, Physiological/genetics
4.
J Appl Toxicol ; 28(4): 484-90, 2008 May.
Article in English | MEDLINE | ID: mdl-17879240

ABSTRACT

The genotoxicity of the azo dye 'Direct Violet' and the removal of this dye by Aspergillus niger strain at different conditions have been investigated in male rats. Two genotoxicity techniques, namely bone marrow micronucleus assay and RAPD fingerprinting pattern, were used in this study for the direct dye and its removal by the fungal strain. Sixty male rats were divided into six treatment groups including a control group and other groups which were exposed for 2 or 8 weeks to Direct Violet dye, Direct Violet dye treated with A. niger at pH 2 or pH 9 or without agitation and acrylamide (30 mg/kg b.w.). A potent dose-dependent response was observed following oral gavage of the dye up to 1000 mg kg(-1), after which significant toxicity to the erythroid compartment was observed. Acrylamide and Direct Violet treatments increased the number of micronucleated polychromatic erythrocytes (MnPCEs) with respect to the controls. This increase was statistically significant in the two time intervals (2 and 8 weeks treatment, P < 0.0001). Fungi treatments at pH 2 and without agitation were able to reduce the number of MnPCEs induced by Direct Violet administration in all duration groups. Fungi treatment at pH 9 was only able to inhibit the genotoxicity of Direct Violet after 8 weeks treatment. The RAPD fingerprinting pattern indicated that most DNA of the samples treated with dye alone or acrylamide revealed polymorphic bands including the appearance and disappearance of the bands, which did not appear in the DNA samples of normal or fungi protected rats. The implications of these findings for the health and safety of occupationally exposed workers are discussed.


Subject(s)
Aspergillus niger/metabolism , Azo Compounds/toxicity , Coloring Agents/toxicity , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutagens/toxicity , Random Amplified Polymorphic DNA Technique , Water Pollutants, Chemical/toxicity , Animals , Azo Compounds/metabolism , Biodegradation, Environmental , Bioreactors , Coloring Agents/metabolism , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Male , Mutagens/metabolism , Rats , Textile Industry , Time Factors , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...