Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(44)2020 Oct.
Article in English | MEDLINE | ID: mdl-33115742

ABSTRACT

The shape of a surface, i.e., its topography, influences many functional properties of a material; hence, characterization is critical in a wide variety of applications. Two notable challenges are profiling temporally changing structures, which requires high-speed acquisition, and capturing geometries with large axial steps. Here, we leverage point-spread-function engineering for scan-free, dynamic, microsurface profiling. The presented method is robust to axial steps and acquires full fields of view at camera-limited framerates. We present two approaches for implementation: fluorescence-based and label-free surface profiling, demonstrating the applicability to a variety of sample geometries and surface types.

2.
Phys Rev Lett ; 124(2): 024501, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004032

ABSTRACT

We demonstrate the existence of a fluid-structure instability arising from the interaction of electro-osmotic flow with an elastic substrate. Considering the case of flow within a soft fluidic chamber, we show that above a certain electric field threshold, negative gauge pressure induced by electro-osmotic flow causes the collapse of its elastic walls. We combine experiments and theoretical analysis to elucidate the underlying mechanism for instability and identify several distinct dynamic regimes. The understanding of this instability is important for the design of electrokinetic systems containing soft elements.

3.
Nano Lett ; 16(4): 2744-8, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26959345

ABSTRACT

Current nanochannel system paradigm commonly neglects the role of the interfacing microchannels and assumes that the ohmic electrical response of a microchannel-nanochannel system is solely determined by the geometric properties of the nanochannel. In this work, we demonstrate that the overall response is determined by the interplay between the nanochannel resistance and various microchannel attributed resistances. Our experiments confirm a recent theoretical prediction that in contrast to what was previously assumed at very low concentrations the role of the interfacing microchannels on the overall resistance becomes increasingly important. We argue that the current nanochannel-dominated conductance paradigm can be replaced with a more correct and intuitive microchannel-nanochannel-resistance-model-based paradigm.

SELECTION OF CITATIONS
SEARCH DETAIL
...