Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 792162, 2021.
Article in English | MEDLINE | ID: mdl-35058906

ABSTRACT

Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.

2.
Front Microbiol ; 11: 549531, 2020.
Article in English | MEDLINE | ID: mdl-33123101

ABSTRACT

Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.

3.
Front Microbiol ; 11: 561204, 2020.
Article in English | MEDLINE | ID: mdl-33101235

ABSTRACT

Cronobacter species are opportunistic pathogens capable of causing life-threatening infections in humans, with serious complications arising in neonates, infants, immuno-compromised individuals, and elderly adults. The genus is comprised of seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite a multiplicity of genomic data for the genus, little is known about likely transmission vectors. Using DNA microarray analysis, in parallel with whole genome sequencing, and targeted PCR analyses, the total gene content of two C. malonaticus, three C. turicensis, and 14 C. sakazaki isolated from various filth flies was assessed. Phylogenetic relatedness among these and other strains obtained during surveillance and outbreak investigations were comparatively assessed. Specifically, microarray analysis (MA) demonstrated its utility to cluster strains according to species-specific and sequence type (ST) phylogenetic relatedness, and that the fly strains clustered among strains obtained from clinical, food and environmental sources from United States, Europe, and Southeast Asia. This combinatorial approach was useful in data mining for virulence factor genes, and phage genes and gene clusters. In addition, results of plasmidotyping were in agreement with the species identity for each strain as determined by species-specific PCR assays, MA, and whole genome sequencing. Microarray and BLAST analyses of Cronobacter fly sequence datasets were corroborative and showed that the presence and absence of virulence factors followed species and ST evolutionary lines even though such genes were orthologous. Additionally, zebrafish infectivity studies showed that these pathotypes were as virulent to zebrafish embryos as other clinical strains. In summary, these findings support a striking phylogeny amongst fly, clinical, and surveillance strains isolated during 2010-2015, suggesting that flies are capable vectors for transmission of virulent Cronobacter spp.; they continue to circulate among United States and European populations, environments, and that this "pattern of circulation" has continued over decades.

4.
Front Microbiol ; 11: 1726, 2020.
Article in English | MEDLINE | ID: mdl-32849369

ABSTRACT

Listeria monocytogenes associated prosthetic joint infections (PJI) are a rare but increasing clinical problem of listeriosis. We characterized two isolates of the same L. monocytogenes strain isolated within five years of each other from a recurrent human prosthetic joint infection. The two isolates although clonally identical were phenotypically distinct confirming that the original infection strain had evolved within the human host PJI environment giving rise to a phenotypically distinct variant. The recurrent PJI isolate displayed various phenotypic differences compared to the parental original PJI isolate including diminished growth and carbon source metabolism, as well as altered morphology and increased stress sensitivity. The PJI isolates were both diminished in virulence due to an identical truncation mutation in the major virulence regulator PrfA. Genome wide sequence comparison provided conclusive evidence that the two isolates were identical clonal descendants of the same L. monocytogenes strain that had evolved through acquisition of various single nucleotide polymorphisms (SNPs) as well as insertion and deletion events (InDels) during a persistent human PJI. Acquired genetic changes included a specific mutation causing premature stop codon (PMSC) and truncation of RNAse J1 protein. Based on analysis of this naturally truncated as well as other complete RNAse J1 deletion mutants we show that the long-term survival of this specific L. monocytogenes strain within the prosthetic joint might in part be explained by the rnjA PMSC mutation that diminishes virulence and activation of the host immune system in a zebrafish embryo localized infection model. Overall our analysis of this special natural case provides insights into random mutation events and molecular mechanisms that might be associated with the adaptation and short-term evolution of this specific L. monocytogenes strain within a persistent human PJI environment.

5.
Microb Genom ; 6(9)2020 09.
Article in English | MEDLINE | ID: mdl-32701425

ABSTRACT

Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica. This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica. The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICEYh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica.


Subject(s)
Embryo, Nonmammalian/microbiology , Genomics/methods , Yersinia Infections/diagnosis , Yersinia enterocolitica/classification , Yersinia/classification , Animals , Conjugation, Genetic , Diagnosis, Differential , Disease Models, Animal , Food Microbiology , Phylogeny , Swine , Virulence Factors/genetics , Yersinia/genetics , Yersinia/isolation & purification , Yersinia/pathogenicity , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/pathogenicity , Zebrafish
6.
Vet Microbiol ; 242: 108566, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32122581

ABSTRACT

Antimicrobial resistance reported in bacteria of animal origin is considered a major challenge to veterinary public health. In this study, the genotypic and phenotypic characterisation of twelve Escherichia coli isolates of bovine origin is reported. Twelve bacterial isolates of animal origin were selected from a previous study based on their multidrug resistant (MDR) profile. Efflux pump activity was measured using ethidium bromide (EtBr) and the biofilm forming ability of the individual strains was assessed using a number of phenotypic assays. All isolates were resistant to tetracyclines and a number of isolates expressed resistance to fluoroquinolones which was also confirmed in silico by the presence of these resistance markers. Amino acid substitutions in the quinolone resistance-determining regions were identified in all isolates and the presence of several siderophores were also noted. Whole genomesequence (WGS) data showed different STs that were not associated with epidemic STs or virulent clonal complexes. Seven isolates formed biofilms in minimal media with some isolates showing better adaptation at 25 °C while others at 37 °C. The capacity to efflux EtBr was found to be high in 4 isolates and impaired in 4 others. The pathogenicity of three selected isolates was assessed in zebrafish embryo infection models, revealing isolates CFS0355 and CFS0356 as highly pathogenic. These results highlight the application of NGS technologies combined with phenotypic assays in providing a better understanding of E. coli of bovine origin and their adaptation to this niche environment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Animals , Biofilms/growth & development , Cattle/microbiology , Computer Simulation , DNA Gyrase/genetics , Embryo, Nonmammalian , Escherichia coli Infections/virology , Microbial Sensitivity Tests , Virulence , Zebrafish/virology
7.
mSphere ; 4(4)2019 08 07.
Article in English | MEDLINE | ID: mdl-31391275

ABSTRACT

Listeria monocytogenes is frequently found in foods and processing facilities, where it can persist, creating concerns for the food industry. Its ability to survive under a wide range of environmental conditions enhances the potential for cross-contamination of the final food products, leading to possible outbreaks of listeriosis. In this study, whole-genome sequencing (WGS) was applied as a tool to characterize and track 100 L. monocytogenes isolates collected from three food processing environments. These WGS data from environmental and food isolates were analyzed to (i) assess the genomic diversity of L. monocytogenes, (ii) identify possible source(s) of contamination, cross-contamination routes, and persistence, (iii) detect absence/presence of antimicrobial resistance-encoding genes, (iv) assess virulence genotypes, and (v) explore in vivo pathogenicity of selected L. monocytogenes isolates carrying different virulence genotypes. The predominant L. monocytogenes sublineages (SLs) identified were SL101 (21%), SL9 (17%), SL121 (12%), and SL5 (12%). Benzalkonium chloride (BC) tolerance-encoding genes were found in 62% of these isolates, a value that increased to 73% among putative persistent subgroups. The most prevalent gene was emrC followed by bcrABC, qacH-Tn6188, and qacC. The L. monocytogenes major virulence factor inlA was truncated in 31% of the isolates, and only one environmental isolate (L. monocytogenes CFS086) harbored all major virulence factors, including Listeria pathogenicity island 4 (LIPI-4), which has been shown to confer hypervirulence. A zebrafish embryo infection model showed a low (3%) embryo survival rate for all putatively hypervirulent L. monocytogenes isolates assayed. Higher embryo survival rates were observed following infection with unknown virulence potential (20%) and putatively hypovirulent (53 to 83%) L. monocytogenes isolates showing predicted pathogenic phenotypes inferred from virulence genotypes.IMPORTANCE This study extends current understanding of the genetic diversity among L. monocytogenes from various food products and food processing environments. Application of WGS-based strategies facilitated tracking of this pathogen of importance to human health along the production chain while providing insights into the pathogenic potential for some of the L. monocytogenes isolates recovered. These analyses enabled the grouping of selected isolates into three putative virulence categories according to their genotypes along with informing selection for phenotypic assessment of their pathogenicity using the zebrafish embryo infection model. It has also facilitated the identification of those isolates with genes conferring tolerance to commercially used biocides. Findings from this study highlight the potential for the application of WGS as a proactive tool to support food safety controls as applied to L. monocytogenes.


Subject(s)
Food Microbiology , Genotype , Listeria monocytogenes/genetics , Whole Genome Sequencing , Animals , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Food Handling/instrumentation , Genetic Variation , Genome, Bacterial , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Virulence Factors/genetics , Zebrafish
8.
Front Microbiol ; 10: 1538, 2019.
Article in English | MEDLINE | ID: mdl-31338084

ABSTRACT

Listeria monocytogenes the causative agent of listeriosis is an important public health concern and food safety challenge. Increased tolerance of this bacterium to benzalkonium chloride (BC), an antibacterial agent widely used in industrial settings, is a growing issue. Plasmid pLMST6 harboring the gene of the multidrug efflux pump protein EmrC has been recently linked to enhanced BC tolerance and meningitis due to L. monocytogenes ST6 strains. In this study, occurrence and contribution of this plasmid to BC tolerance was examined using PCR, plasmid curing and transformation, RT-qPCR and proteome analysis, respectively. Furthermore, the substrate specificity of the pLMST6 associated EmrC efflux pump and the impact of the plasmid on L. monocytogenes virulence were investigated. pLMST6 was detected in 7 (1.6%) of 439 L. monocytogenes strains isolated from different sources. A phenotypic role of this plasmid in conferring increased BC tolerance was confirmed by showing that plasmid cure increases BC susceptibility whereas plasmid complementation and transformation increased BC tolerance in different L. monocytogenes genetic backgrounds and L. innocua. RT-qPCR showed that BC stress exposure strongly induces the expression of mRNAs associated with pLMST6 genes for EmrC and a TetR transcription regulator. A full proteome analysis in a plasmid harboring L. monocytogenes strain revealed that the pLMST6 encoded putative TetR family transcription regulator protein is the most upregulated protein in response to BC stress exposure. An investigation into the EmrC efflux pump's substrate spectrum showed that while pLMST6 confers increased tolerance to other quaternary ammonium compounds (QACs) based disinfectants it has no impact on the sensitivity of L. monocytogenes to non-QAC disinfectants as well as on antibiotics such as ampicillin, tetracycline and gentamicin. A reduction in the survival of zebrafish embryos infected with pLMST6 plasmid harboring L. monocytogenes strains was observed when compared with plasmid cured variants of the same strains suggesting that some pLMST6 harbored genes might contribute to increased virulence capacity. Overall these results confirm the phenotypic contribution of pLMST6 plasmid in promoting and dissemination of BC tolerance in L. monocytogenes as well as provide new insights on different molecular levels of pLMST6 associated genes in response to BC stress.

9.
Front Microbiol ; 10: 957, 2019.
Article in English | MEDLINE | ID: mdl-31130938

ABSTRACT

A combination of phenotype microarrays, targeted stress resistance and virulence assays and comparative genome analysis was used to compare a set of Listeria monocytogenes strains including those involved in previous Swiss foodborne listeriosis outbreaks. Despite being highly syntenic in gene content these strains showed significant phenotypic variation in utilization of different carbon (C)-sources as well as in resistance of osmotic and pH stress conditions that are relevant to host and food associated environments. An outbreak strain from the 2005 Swiss Tomme cheese listeriosis outbreak (Lm3163) showed the highest versatility in C-sources utilized whereas the strain responsible for the 1983 to 1987 Vacherin Montd'or cheese listeriosis outbreak (LL195) showed the highest tolerance to both osmotic and pH stress conditions among the examined strains. Inclusion of L-norvaline led to enhanced resistance of acidic stress in all the examined strains and there were strain-strain-specific differences observed in the ability of other amino acids and urea to enhance acid stress resistance in L. monocytogenes. A strain dependent inhibition pattern was also observed upon inclusion of ß-phenylethylamine under alkaline stress conditions. In targeted phenotypic analysis the strain-specific differences in salt stress tolerance uncovered in phenotypic microarrays were corroborated and variations in host cell invasion and virulence among the examined strains were also revealed. Outbreak associated strains representing lineage I serotype 4b showed superior pathogenicity in a zebrafish infection model whilst Lm3163 a lineage II serotype 1/2a outbreak strain demonstrated the highest cellular invasion capacity amongst the tested strains. A genome wide sequence comparison of the strains only revealed few genetic differences between the strains suggesting that variations in gene regulation and expression are largely responsible for the phenotypic differences revealed among the examined strains. Our results have generated data that provides a potential basis for the future design of improved Listeria specific media to enhance routine detection and isolation of this pathogen as well as provide knowledge for developing novel methods for its control in food.

10.
Infect Immun ; 87(4)2019 04.
Article in English | MEDLINE | ID: mdl-30670551

ABSTRACT

Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.


Subject(s)
Bird Diseases/microbiology , Listeria monocytogenes/pathogenicity , Listeria/isolation & purification , Listeria/pathogenicity , Listeriosis/microbiology , Listeriosis/veterinary , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ducks , Feces/microbiology , Galliformes , Genome, Bacterial , Genomic Islands , Humans , Listeria/classification , Listeria/genetics , Listeria monocytogenes/classification , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Phylogeny , Serotyping , Virulence , Whole Genome Sequencing
11.
Article in English | MEDLINE | ID: mdl-29124040

ABSTRACT

Cold shock-domain family proteins (Csps) are highly conserved nucleic acid binding proteins regulating the expression of various genes including those involved in stress resistance and virulence in bacteria. We show here that Csps are involved in virulence, cell aggregation and flagella-based extracellular motility of Listeria monocytogenes. A L. monocytogenes mutant deleted in all three csp genes (ΔcspABD) is attenuated with respect to human macrophage infection as well as virulence in a zebrafish infection model. Moreover, this mutant is incapable of aggregation and fails to express surface flagella or exhibit swarming motility. An evaluation of double csp gene deletion mutant (ΔcspBD, ΔcspAD and ΔcspAB) strains that produce single csp genes showed that there is redundancy as well as functional differences among the three L. monocytogenes Csps in their contributions to virulence, cellular aggregation, flagella production, and swarming motility. Protein and mRNA expression analysis further showed impaired expression of key virulence and motility genes in the csp mutants. Our observations at protein and mRNA level suggest Csp-dependent expression regulation of these genes at transcriptional and post-transcriptional levels. In a mutant lacking all csp genes (ΔcspABD) as well as those possessing single csp genes (ΔcspBD, ΔcspAD, and ΔcspAB) we detected reduced levels of proteins or activity as well as transcripts from the prfA, hly, mpl, and plcA genes suggesting a Csp-dependent transcriptional regulation of these genes. These csp mutants also had reduced or completely lacked ActA proteins and cell surface flagella but contained elevated actA and flaA mRNA levels compared to the parental wild type strain suggesting Csp involvement in post-transcriptional regulation of these genes. Overall, our results suggest that Csps contribute to the expression regulation of virulence and flagella-associated genes thereby promoting host pathogenicity, cell aggregation and flagella-based motility processes in L. monocytogenes.


Subject(s)
Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/metabolism , Flagella/genetics , Flagella/metabolism , Gene Expression Regulation, Bacterial , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Virulence/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Disease Models, Animal , Gene Expression Profiling , Genes, Bacterial , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Humans , Listeria monocytogenes/cytology , Listeriosis/microbiology , Macrophages/microbiology , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Phosphoinositide Phospholipase C/analysis , RNA, Messenger/metabolism , Sequence Deletion , THP-1 Cells , Zebrafish
12.
Front Microbiol ; 8: 1136, 2017.
Article in English | MEDLINE | ID: mdl-28694793

ABSTRACT

Cronobacter (C.) sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF), thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST) 83, clonal complex (CC) 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS) of this strain together with four more ST83 strains (PIF production environment-associated) confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA) and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90-100%) zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry.

13.
PLoS One ; 11(6): e0158428, 2016.
Article in English | MEDLINE | ID: mdl-27355472

ABSTRACT

Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as "virulence plasmids" in Cronobacter and underpinned the importantce of two putative virulence factors-cpa and zpx-in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens.


Subject(s)
Cronobacter sakazakii/genetics , Cronobacter sakazakii/pathogenicity , Enterobacteriaceae Infections/microbiology , Virulence , Zebrafish/microbiology , Animals , Genetic Complementation Test , Genome , Immune System , Mutation , Plasmids/genetics , Virulence Factors/genetics , Zebrafish/embryology
14.
Emerg Microbes Infect ; 4(5): e29, 2015 May.
Article in English | MEDLINE | ID: mdl-26060602

ABSTRACT

Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827(T), a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 10(4) CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo.


Subject(s)
Cronobacter/pathogenicity , Disease Models, Animal , Enterobacteriaceae Infections/microbiology , Opportunistic Infections/microbiology , Zebrafish , Animals , Animals, Genetically Modified , Anti-Bacterial Agents/pharmacology , Cronobacter/drug effects , Cronobacter/genetics , Cronobacter/metabolism , Disease Progression , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/mortality , Green Fluorescent Proteins/metabolism , Humans , Immunity, Innate , Infant, Newborn , Microscopy, Confocal , Mutation , Opportunistic Infections/immunology , Opportunistic Infections/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...