Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Elife ; 122024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372712

ABSTRACT

Septic shock is characterized by an excessive inflammatory response depicted in a cytokine storm that results from invasive bacterial, fungi, protozoa, and viral infections. Non-canonical inflammasome activation is crucial in the development of septic shock promoting pyroptosis and proinflammatory cytokine production via caspase-11 and gasdermin D (GSDMD). Here, we show that NAD+ treatment protected mice toward bacterial and lipopolysaccharide (LPS)-induced endotoxic shock by blocking the non-canonical inflammasome specifically. NAD+ administration impeded systemic IL-1ß and IL-18 production and GSDMD-mediated pyroptosis of macrophages via the IFN-ß/STAT-1 signaling machinery. More importantly, NAD+ administration not only improved casp-11 KO (knockout) survival but rendered wild type (WT) mice completely resistant to septic shock via the IL-10 signaling pathway that was independent from the non-canonical inflammasome. Here, we delineated a two-sided effect of NAD+ blocking septic shock through a specific inhibition of the non-canonical inflammasome and promoting immune homeostasis via IL-10, underscoring its unique therapeutic potential.


Subject(s)
Cytokines , Shock, Septic , Animals , Mice , Interleukin-10 , Inflammasomes , NAD , Shock, Septic/prevention & control , Macrophages
3.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38354141

ABSTRACT

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Subject(s)
Dietary Fats , Enzyme Replacement Therapy , Hematopoietic Stem Cell Transplantation , Immunologic Factors , Rituximab , Wolman Disease , Humans , Infant , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Chimerism , Dietary Fats/adverse effects , Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Immunologic Factors/therapeutic use , Rituximab/therapeutic use , Transplantation, Homologous , Wolman Disease/diet therapy , Wolman Disease/drug therapy , Wolman Disease/immunology , Wolman Disease/therapy
4.
Trends Immunol ; 45(1): 48-61, 2024 01.
Article in English | MEDLINE | ID: mdl-38123369

ABSTRACT

In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.


Subject(s)
Organ Transplantation , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Immunosuppressive Agents , T-Lymphocytes, Regulatory , Receptors, Antigen, T-Cell
5.
Kidney Res Clin Pract ; 42(3): 389-402, 2023 05.
Article in English | MEDLINE | ID: mdl-37313613

ABSTRACT

BACKGROUND: Despite current matching efforts to identify optimal donor-recipient pairs for kidney transplantation, alloimmunity remains a major source of late transplant failure. Additional genetic parameters in donor-recipient matching could help improve longterm outcomes. Here, we studied the impact of a non-muscle myosin heavy chain 9 gene (MYH9) polymorphism on allograft failure. METHODS: We conducted an observational cohort study, analyzing the DNA of 1,271 kidney donor-recipient transplant pairs from a single academic hospital for the MYH9 rs11089788 C>A polymorphism. The associations of the MYH9 genotype with risk of graft failure, biopsy-proven acute rejection (BPAR), and delayed graft function (DGF) were estimated. RESULTS: A trend was seen in the association between the MYH9 polymorphism in the recipient and graft failure (recessive model, p = 0.056), but not for the MYH9 polymorphism in the donor. The AA-genotype MYH9 polymorphism in recipients was associated with higher risk of DGF (p = 0.03) and BPAR (p = 0.021), although significance was lost after adjusting for covariates (p = 0.15 and p = 0.10, respectively). The combined presence of the MYH9 polymorphism in donor-recipient pairs was associated with poor long-term kidney allograft survival (p = 0.04), in which recipients with an AA genotype receiving a graft with an AA genotype had the worst outcomes. After adjustment, this combined genotype remained significantly associated with 15-year death-censored kidney graft survival (hazard ratio, 1.68; 95% confidence interval, 1.05-2.70; p = 0.03). CONCLUSION: Our results reveal that recipients with an AA-genotype MYH9 polymorphism receiving a donor kidney with an AA genotype have significantly elevated risk of graft failure after kidney transplantation.

6.
Front Transplant ; 2: 1149334, 2023.
Article in English | MEDLINE | ID: mdl-38993887

ABSTRACT

In the transplant community, research efforts exploring endogenous alternatives to inducing tolerogenic allo-specific immune responses are much needed. In this regard, CD4 + FoxP3+ regulatory T cells (Tregs) are appealing candidates due to their intrinsic natural immunosuppressive qualities. To date, various homeostatic factors that dictate Treg survival and fitness have been elucidated, particularly the non-redundant roles of antigenic CD3ζ/T-cell-receptor, co-stimulatory CD28, and cytokine interleukin (IL-)2 dependent signaling. Many of the additional biological signals that affect Tregs remain to be elucidated, however, especially in the transplant context. Previously, we demonstrated an unexpected link between type I interferons (IFNs) and Tregs in models of multiple myeloma (MM)-where MM plasmacytes escaped immunological surveillance by enhancing type I IFN signaling and precipitating upregulated Treg responses that could be overturned with specific knockdown of type I IFN signaling. Here, we elaborated on these findings by assessing the role of type I IFN signaling (IFN-α and -ß) on Treg homeostasis within an alloimmune context. Specifically, we studied the induction of Tregs from naïve CD4 T cells. Using in vitro and in vivo models of murine skin allotransplantation, we found that type I IFN indeed spatiotemporally enhanced the polarization of naïve CD4 T cells into FoxP3+ Tregs. Notably, however, this effect was not independent of, and rather co-dependent on, ancillary cytokine signals including IL-2. These findings provide evidence for the relevance of type I IFN pathway in modulating FoxP3+ Treg responses and, by extension, stipulate an additional means of facilitating Treg fitness via type I IFNs.

7.
Am J Transplant ; 22 Suppl 4: 45-57, 2022 12.
Article in English | MEDLINE | ID: mdl-36453708

ABSTRACT

Of all kidney transplants, half are still lost in the first decade after transplantation. Here, using genetics, we probed whether interleukin 6 (IL-6) could be a target in kidney transplantation to improve graft survival. Additionally, we investigated if a genetic risk score (GRS) based on IL6 and IL10 variants could improve prognostication of graft loss. In a prospective cohort study, DNA of 1271 donor-recipient kidney transplant pairs was analyzed for the presence of IL6, IL6R, IL10, IL10RA, and IL10RB variants. These polymorphisms and their GRS were then associated with 15-year death-censored allograft survival. The C|C-genotype of the IL6 polymorphism in donor kidneys and the combined C|C-genotype in donor-recipient pairs were both associated with a reduced risk of graft loss (p = .043 and p = .042, respectively). Additionally, the GRS based on IL6, IL6R, IL10, IL10RA, and IL10RB variants was independently associated with the risk of graft loss (HR 1.53, 95%-CI [1.32-1.84]; p < .001). Notably, the GRS improved risk stratification and prediction of graft loss beyond the level of contemporary clinical markers. Our findings reveal the merits of a polygenic IL-6-based risk score strengthened with IL-10- polymorphisms for the prognostication and risk stratification of late graft failure in kidney transplantation.


Subject(s)
Interleukin-10 , Interleukin-6 , Humans , Interleukin-10/genetics , Interleukin-6/genetics , Prospective Studies , Kidney , Risk Factors , Allografts
9.
Front Immunol ; 13: 899975, 2022.
Article in English | MEDLINE | ID: mdl-35757726

ABSTRACT

Regulatory T cells (Tregs) have shown great promise as a means of cellular therapy in a multitude of allo- and auto-immune diseases-due in part to their immunosuppressive potency. Nevertheless, the clinical efficacy of human Tregs in patients has been limited by their poor in vivo homeostasis. To avert apoptosis, Tregs require stable antigenic (CD3ζ/T-cell-receptor-mediated), co-stimulatory (CD28-driven), and cytokine (IL-2-dependent) signaling. Notably, this sequence of signals supports an activated Treg phenotype that includes a high expression of granzymes, particularly granzyme B (GrB). Previously, we have shown that aside from the functional effects of GrB in lysing target cells to modulate allo-immunity, GrB can leak out of the intracellular lysosomal granules of host Tregs, initiating pro-apoptotic pathways. Here, we assessed the role of inhibiting mechanistic target of rapamycin complex 1 (mTORC1), a recently favored drug target in the transplant field, in regulating human Treg apoptosis via GrB. Using ex vivo models of human Treg culture and a humanized mouse model of human skin allotransplantation, we found that by inhibiting mTORC1 using rapamycin, intracytoplasmic expression and functionality of GrB diminished in host Tregs; lowering human Treg apoptosis by in part decreasing the phosphorylation of S6K and c-Jun. These findings support the already clinically validated effects of mTORC1 inhibition in patients, most notably their stabilization of Treg bioactivity and in vivo homeostasis.


Subject(s)
Apoptosis , T-Lymphocytes, Regulatory , Animals , Granzymes/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism
10.
J Inflamm Res ; 15: 2243-2254, 2022.
Article in English | MEDLINE | ID: mdl-35411171

ABSTRACT

Introduction: Kidney transplantation has excellent short-term results with current immunosuppression regimes, but long-term outcomes have barely improved over the past two decades. Hence, there is a need for new therapeutic options to increase long-term survival of kidney grafts. Drug development for kidney transplantation has slowly plateaued, limiting progress while making drug repurposing an attractive alternative. We, therefore, investigated the impact of tumor necrosis factor-alpha (TNF-α) gene (TNF) polymorphisms on kidney graft survival after transplantation. Methods: We performed a prospective cohort study to assess the association of TNF polymorphisms (rs1800629 G>A and rs3093662 A>G) with primary non-function and death-censored kidney allograft survival in 1271 kidney transplant pairs from the University Medical Center Groningen in The Netherlands. Results: The G-allele of the TNF rs3093662 polymorphism in donor kidneys was associated with a higher risk of immediate graft loss (odds ratio: 2.05; 95%-CI: 1.06-3.97; P = 0.032). Furthermore, the G-allele of this TNF rs3093662 polymorphism in the donor was also associated with worse 5-year, 10-year, and 15-year death-censored kidney graft survival (P < 0.05). The cumulative incidence of graft loss was 15.9% in the reference AA-genotype group and 25.2% in the AG/GG-genotype group, respectively. In multivariable analysis, the association between the TNF rs3093662 polymorphism in the donor and 15-year death-censored kidney graft survival remained significant (hazard ratio: 1.51; 95%-CI: 1.05-2.19, P = 0.028). Discussion: In conclusion, kidney allografts possessing a high-producing TNF polymorphism have a greater risk of immediate and late graft loss. Our study adds to a growing body of literature indicating the potential of TNF-α blockade in improving kidney transplantation outcomes.

11.
Clin Kidney J ; 15(2): 278-286, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35145642

ABSTRACT

BACKGROUND: Improvement of long-term outcomes in kidney transplantation remains one of the most pressing challenges, yet drug development is stagnating. Human genetics offers an opportunity for much-needed target validation in transplantation. Conflicting data exist about the effect of transforming growth factor-beta 1 (TGF-ß1) on kidney transplant survival, since TGF-ß1 has pro-fibrotic and protective effects. We investigated the impact of a recently discovered functional TGFB1 polymorphism on kidney graft survival. METHODS: We performed an observational cohort study analysing recipient and donor DNA in 1271 kidney transplant pairs from the University Medical Centre Groningen in The Netherlands, and associated a low-producing TGFB1 polymorphism (rs1800472-C > T) with 5-, 10- and 15-year death-censored kidney graft survival. RESULTS: Donor genotype frequencies of rs1800472 in TGFB1 differed significantly between patients with and without graft loss (P = 0.014). Additionally, the low-producing TGFB1 polymorphism in the donor was associated with an increased risk of graft loss following kidney transplantation (hazard ratio = 2.12 for the T-allele; 95% confidence interval 1.18-3.79; P = 0.012). The incidence of graft loss within 15 years of follow-up was 16.4% in the CC-genotype group and 31.6% in the CT-genotype group. After adjustment for transplant-related covariates, the association between the TGFB1 polymorphism in the donor and graft loss remained significant. In contrast, there was no association between the TGFB1 polymorphism in the recipient and graft loss. CONCLUSIONS: Kidney allografts possessing a low-producing TGFB1 polymorphism have a higher risk of late graft loss. Our study adds to a growing body of evidence that TGF-ß1 is beneficial, rather than harmful, for kidney transplant survival.

13.
Sci Rep ; 11(1): 16483, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389747

ABSTRACT

Rejection after kidney transplantation remains an important cause of allograft failure that markedly impacts morbidity. Cytokines are a major player in rejection, and we, therefore, explored the impact of interleukin-6 (IL6) and IL-6 receptor (IL6R) gene polymorphisms on the occurrence of rejection after renal transplantation. We performed an observational cohort study analyzing both donor and recipient DNA in 1271 renal transplant-pairs from the University Medical Center Groningen in The Netherlands and associated single nucleotide polymorphisms (SNPs) with biopsy-proven rejection after kidney transplantation. The C-allele of the IL6R SNP (Asp358Ala; rs2228145 A > C, formerly rs8192284) in donor kidneys conferred a reduced risk of rejection following renal transplantation (HR 0.78 per C-allele; 95%-CI 0.67-0.90; P = 0.001). On the other hand, the C-allele of the IL6 SNP (at position-174 in the promoter; rs1800795 G > C) in donor kidneys was associated with an increased risk of rejection for male organ donors (HR per C-allele 1.31; 95%-CI 1.08-1.58; P = 0.0006), but not female organ donors (P = 0.33). In contrast, neither the IL6 nor IL6R SNP in the recipient showed an association with renal transplant rejection. In conclusion, donor IL6 and IL6R genotypes but not recipient genotypes represent an independent prognostic marker for biopsy-proven renal allograft rejection.


Subject(s)
Graft Rejection/genetics , Interleukin-6/genetics , Kidney Transplantation/adverse effects , Receptors, Interleukin-6/genetics , Adult , Biopsy , Female , Graft Rejection/pathology , Humans , Kidney/pathology , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Tissue Donors
14.
J Am Soc Nephrol ; 32(4): 994-1004, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33658284

ABSTRACT

BACKGROUND: Developing a noninvasive clinical test to accurately diagnose kidney allograft rejection is critical to improve allograft outcomes. Urinary exosomes, tiny vesicles released into the urine that carry parent cells' proteins and nucleic acids, reflect the biologic function of the parent cells within the kidney, including immune cells. Their stability in urine makes them a potentially powerful tool for liquid biopsy and a noninvasive diagnostic biomarker for kidney-transplant rejection. METHODS: Using 192 of 220 urine samples with matched biopsy samples from 175 patients who underwent a clinically indicated kidney-transplant biopsy, we isolated urinary exosomal mRNAs and developed rejection signatures on the basis of differential gene expression. We used crossvalidation to assess the performance of the signatures on multiple data subsets. RESULTS: An exosomal mRNA signature discriminated between biopsy samples from patients with all-cause rejection and those with no rejection, yielding an area under the curve (AUC) of 0.93 (95% CI, 0.87 to 0.98), which is significantly better than the current standard of care (increase in eGFR AUC of 0.57; 95% CI, 0.49 to 0.65). The exosome-based signature's negative predictive value was 93.3% and its positive predictive value was 86.2%. Using the same approach, we identified an additional gene signature that discriminated patients with T cell-mediated rejection from those with antibody-mediated rejection (with an AUC of 0.87; 95% CI, 0.76 to 0.97). This signature's negative predictive value was 90.6% and its positive predictive value was 77.8%. CONCLUSIONS: Our findings show that mRNA signatures derived from urinary exosomes represent a powerful and noninvasive tool to screen for kidney allograft rejection. This finding has the potential to assist clinicians in therapeutic decision making.

15.
Sci Transl Med ; 12(569)2020 11 11.
Article in English | MEDLINE | ID: mdl-33177180

ABSTRACT

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


Subject(s)
Interleukin-2 , T-Lymphocytes, Regulatory , Animals , Mice , Nanogels , Receptors, Antigen, T-Cell , Signal Transduction
16.
Sci Rep ; 10(1): 14249, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859934

ABSTRACT

Solid organ transplantation is a lifesaving therapy for patients with end-organ disease. Current immunosuppression protocols are not designed to target antigen-specific alloimmunity and are uncapable of preventing chronic allograft injury. As myeloid-derived suppressor cells (MDSCs) are potent immunoregulatory cells, we tested whether donor-derived MDSCs can protect heart transplant allografts in an antigen-specific manner. C57BL/6 (H2Kb, I-Ab) recipients pre-treated with BALB/c MDSCs were transplanted with either donor-type (BALB/c, H2Kd, I-Ad) or third-party (C3H, H2Kk, I-Ak) cardiac grafts. Spleens and allografts from C57BL/6 recipients were harvested for immune phenotyping, transcriptomic profiling and functional assays. Single injection of donor-derived MDSCs significantly prolonged the fully MHC mismatched allogeneic cardiac graft survival in a donor-specific fashion. Transcriptomic analysis of allografts harvested from donor-derived MDSCs treated recipients showed down-regulated proinflammatory cytokines. Immune phenotyping showed that the donor MDSCs administration suppressed effector T cells in recipients. Interestingly, significant increase in recipient endogenous CD11b+Gr1+ MDSC population was observed in the group treated with donor-derived MDSCs compared to the control groups. Depletion of this endogenous MDSCs with anti-Gr1 antibody reversed donor MDSCs-mediated allograft protection. Furthermore, we observed that the allogeneic mixed lymphocytes reaction was suppressed in the presence of CD11b+Gr1+ MDSCs in a donor-specific manner. Donor-derived MDSCs prolong cardiac allograft survival in a donor-specific manner via induction of recipient's endogenous MDSCs.


Subject(s)
Graft Survival/immunology , Heart Transplantation/methods , Myeloid-Derived Suppressor Cells/immunology , Allografts/immunology , Animals , Graft Rejection/immunology , Graft Rejection/mortality , Heart Transplantation/mortality , Hematopoietic Stem Cell Transplantation , Immune Tolerance , Immunosuppression Therapy/methods , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/physiology , T-Lymphocytes/immunology , Tissue Donors , Transplantation, Homologous
17.
Proc Natl Acad Sci U S A ; 117(11): 6042-6046, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32111690

ABSTRACT

Induction of longstanding immunologic tolerance is essential for survival of transplanted organs and tissues. Despite recent advances in immunosuppression protocols, allograft damage inflicted by antibody specific for donor organs continues to represent a major obstacle to graft survival. Here we report that activation of regulatory CD8 T cells (CD8 Treg) that recognize the Qa-1 class Ib major histocompatibility complex (MHC), a mouse homolog of human leukocyte antigen-E (HLA-E), inhibits antibody-mediated immune rejection of heart allografts. We analyzed this response using a mouse model that harbors a point mutation in the class Ib MHC molecule Qa-1, which disrupts Qa-1 binding to the T cell receptor (TCR)-CD8 complex and impairs the CD8 Treg response. Despite administration of cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig), Qa-1 mutant mice developed robust donor-specific antibody responses and accelerated heart graft rejection. We show that these allo-antibody responses reflect diminished Qa-1-restricted CD8 Treg-mediated suppression of host follicular helper T cell-dependent antibody production. These findings underscore the critical contribution of this Qa-1/HLA-E-dependent regulatory pathway to maintenance of transplanted organs and suggest therapeutic approaches to ameliorate allograft rejection.


Subject(s)
Graft Rejection/immunology , Heart Transplantation/adverse effects , Histocompatibility Antigens Class I/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/immunology , Allografts/immunology , Allografts/metabolism , Animals , Disease Models, Animal , Graft Rejection/blood , Graft Rejection/genetics , Graft Survival/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Tolerance , Isoantibodies/immunology , Isoantibodies/metabolism , Isoantigens/immunology , Isoantigens/metabolism , Mice , Myocardium/immunology , Myocardium/metabolism , Point Mutation , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Transplantation, Homologous/adverse effects
18.
Am J Physiol Renal Physiol ; 316(5): F957-F965, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30864839

ABSTRACT

Ischemia-reperfusion injury represents one of the most common causes of acute kidney injury, a serious and often deadly condition that affects up to 20% of all hospitalized patients in the United States. However, the current standard assay used universally for the diagnosis of acute kidney injury, serum creatinine, does not detect renal damage early in its course. Serendipitously, we found that the immunofluorescent signal of the constitutive podocyte marker podoplanin fades in the glomerulus and intensifies in the tubulointerstitial compartment of the kidney shortly after ischemia-reperfusion injury in 8- to 10-wk-old male C57Bl/6j mice. Therefore, we sought to define the appearance and course of the podoplanin-positive signal in the kidney after ischemia-reperfusion injury. The tubulointerstitial podoplanin-positive signal increased as early as 2 h but persisted for 7 days after ischemia-reperfusion injury. In addition, the strength of this tubulointerstitial signal was directly proportional to the severity of ischemia, and its location shifted from the tubules to interstitial cells over time. Finally, we detected podoplanin in the urine of mice after ischemia, and we observed that an increase in the urine podoplanin-to-creatinine ratio correlated strongly with the onset of renal ischemia-reperfusion injury. Our findings indicate that the measurement of urine podoplanin harbors promising potential for use as a novel biomarker for the early detection of ischemia-reperfusion injury of the kidney.


Subject(s)
Acute Kidney Injury/urine , Membrane Glycoproteins/urine , Podocytes/metabolism , Reperfusion Injury/urine , Acute Kidney Injury/pathology , Animals , Biomarkers/urine , Creatinine/urine , Disease Models, Animal , Male , Mice, Inbred C57BL , Podocytes/pathology , Reperfusion Injury/pathology , Severity of Illness Index , Time Factors , Up-Regulation
19.
EBioMedicine ; 38: 79-88, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30497977

ABSTRACT

BACKGROUND: Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS: Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS: The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION: Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Endothelium, Lymphatic/pathology , Lymph Nodes/pathology , Neovascularization, Pathologic , Pancreatic Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biomarkers , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Line , Disease Models, Animal , Endothelium, Lymphatic/drug effects , Endothelium, Lymphatic/metabolism , Female , Humans , Immunohistochemistry , Male , Mice , Molecular Targeted Therapy , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Neovascularization, Pathologic/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Theranostic Nanomedicine , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
20.
JCI Insight ; 3(20)2018 10 18.
Article in English | MEDLINE | ID: mdl-30333312

ABSTRACT

Recent studies in cancer research have focused intensely on the antineoplastic effects of immune checkpoint inhibitors. While the development of these inhibitors has progressed successfully, strategies to further improve their efficacy and reduce their toxicity are still needed. We hypothesized that the delivery of anti-PD-1 antibody encapsulated in PLGA nanoparticles (anti-PD-1 NPs) to the spleen would improve the antitumor effect of this agent. Unexpectedly, we found that mice treated with a high dose of anti-PD-1 NPs exhibited significantly higher mortality compared with those treated with free anti-PD-1 antibody, due to the overactivation of T cells. Administration of anti-PD-1 NPs to splenectomized LT-α-/- mice, which lack both lymph nodes and spleen, resulted in a complete reversal of this increased mortality and revealed the importance of secondary lymphoid tissues in mediating anti-PD-1-associated toxicity. Attenuation of the anti-PD-1 NPs dosage prevented toxicity and significantly improved its antitumor effect in the B16-F10 murine melanoma model. Furthermore, we found that anti-PD-1 NPs undergo internalization by DCs in the spleen, leading to their maturation and the subsequent activation of T cells. Our findings provide important clues that can lead to the development of strategies to enhance the efficacy of immune checkpoint inhibitors.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Dendritic Cells/immunology , Drug Carriers/chemistry , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/toxicity , Cell Line, Tumor/transplantation , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Lymphotoxin-alpha/genetics , Mice , Mice, Knockout , Nanoparticles/chemistry , Neoplasms/immunology , Neoplasms/mortality , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Programmed Cell Death 1 Receptor/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...