Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Rehabil Assist Technol Eng ; 9: 20556683211061995, 2022.
Article in English | MEDLINE | ID: mdl-35127129

ABSTRACT

INTRODUCTION: In recent years, electromyography (EMG) has been increasingly studied for wearable applications. Conventional gel electrodes for electrophysiological recordings have limited use in everyday applications such as prosthetic control or muscular therapy at home. This study investigates the efficacy and feasibility of dry-contact electrode materials employed in smart textiles for EMG recordings. METHODS: Dry-contact electrode materials were selected and implemented on textile substrates. Using these electrodes, EMG was recorded from the forearm of able-bodied subjects. 25% and 50% isometric maximum voluntary contractions were captured. A comparative investigation was performed against gel electrodes, assessing the effect of material properties on signal fidelity and strength compared. RESULTS: When isolating for electrode surface area and pressure, 31 of the 40 materials demonstrated strong positive correlations in their mean PSD with gel electrodes (r > 95, p < 0.001). The inclusion of ionic liquids in the material composition, and using raised or flat electrodes, did not demonstrate a significant effect in signal quality. CONCLUSIONS: For EMG dry-contact electrodes, comparing the performance against gel electrodes for the application with the selected material is important. Other factors recommended to be studied are electrodes' durability and long-term stability.

2.
Sensors (Basel) ; 22(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35062627

ABSTRACT

Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users' intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with potential skin irritations and discomfort. Alternative dry solid metallic electrodes also face long-term usability and comfort challenges due to their inflexible and non-breathable structures. This is critical when the anatomy of the targeted body region is variable (e.g., residual limbs of individuals with amputation), and conformal contact is essential. In this study, textile electrodes were developed, and their performance in recording EMG signals was compared to gel electrodes. Additionally, to assess the reusability and robustness of the textile electrodes, the effect of 30 consumer washes was investigated. Comparisons were made between the signal-to-noise ratio (SNR), with no statistically significant difference, and with the power spectral density (PSD), showing a high correlation. Subsequently, a fully textile sleeve was fabricated covering the forearm, with 14 textile electrodes. For three individuals, an artificial neural network model was trained, capturing the EMG of 7 distinct finger movements. The personalized models were then used to successfully control a myoelectric prosthetic hand.


Subject(s)
Artificial Limbs , Textiles , Clothing , Electrodes , Electromyography , Humans , Pilot Projects
3.
IEEE J Biomed Health Inform ; 26(1): 243-253, 2022 01.
Article in English | MEDLINE | ID: mdl-34018942

ABSTRACT

Smart textiles provide an opportunity to simultaneously record various electrophysiological signals, e.g., ECG, from the human body in a non-invasive and continuous manner. Accurate processing of ECG signals recorded using textile sensors is challenging due to the very low signal-to-noise ratio (SNR). Signal processing algorithms that can extract ECG signals out of textile-based electrode recordings, despite low SNR are needed. Presently, there are no textile ECG datasets available to develop, test and validate these algorithms. In this paper we attempted to model textile ECG signals by adding the textile sensor noise to open access ECG signals. We employed the linear predictive coding method to model different features of this noise. By approximating the linear predictive coding residual signals using Kernel Density Estimation, an artificial textile ECG noise signal was generated by filtering the residual signal with the linear predictive coding coefficients. The synthetic textile sensor noise was added to the MIT-BIH Arrhythmia Database (MITDB), thus creating Textile-like ECG dataset consisting of 108 trials (30 min each). Furthermore, a Python code for generating textile-like ECG signals with variable SNR was also made available online. Finally, to provide a benchmark for the performance of R-peak detection algorithms on textile ECG, the five common R-peak detection algorithms: Pan & Tompkins, improved Pan & Tompkins (in Biosppy), Hamilton, Engelse, and Khamis, were tested on textile-like MITDB. This work provides an approach to generating noisy textile ECG signals, and facilitating the development, testing, and evaluation of signal processing algorithms for textile ECGs.


Subject(s)
Artifacts , Signal Processing, Computer-Assisted , Algorithms , Electrocardiography/methods , Humans , Signal-To-Noise Ratio , Textiles
4.
Materials (Basel) ; 14(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34640132

ABSTRACT

The connection between flexible textiles and stiff electronic components has always been structurally weak and a limiting factor in the establishment of smart textiles in our everyday life. This paper focuses on the formation of reliable connections between conductive textiles and conventional litz wires using ultrasonic welding. The paper offers a promising approach to solving this problem. The electrical and mechanical performance of the samples were investigated after 15 and 30 wash-and-dry cycles in a laundry machine. Here the contact resistances and their peeling strength were measured. Furthermore, their connection properties were analysed in microsections. The resistance of the joints increased more than 300%, because the silver-coated wires suffered under the laundry cycles. Meanwhile, the mechanical strength during the peeling test decreased by only about 20% after 15 cycles and remained the same after 30 cycles. The good results obtained in this study suggest that ultrasonic welding offers a useful approach to the connection of textile electronics to conductive wires and to the manufacture of smart textiles.

5.
Nanoscale ; 13(30): 12818-12847, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34477768

ABSTRACT

The quest for a close human interaction with electronic devices for healthcare, safety, energy and security has driven giant leaps in portable and wearable technologies in recent years. Electronic textiles (e-textiles) are emerging as key enablers of wearable devices. Unlike conventional heavy, rigid, and hard-to-wear gadgets, e-textiles can lead to lightweight, flexible, soft, and breathable devices, which can be worn like everyday clothes. A new generation of fibre-based electronics is emerging which can be made into wearable e-textiles. A suite of start-of-the-art functional materials have been used to develop novel fibre-based devices (FBDs), which have shown excellent potential in creating wearable e-textiles. Recent research in this area has led to the development of fibre-based electronic, optoelectronic, energy harvesting, energy storage, and sensing devices, which have also been integrated into multifunctional e-textile systems. Here we review the key technological advancements in FBDs and provide an updated critical evaluation of the status of the research in this field. Focusing on various aspects of materials development, device fabrication, fibre processing, textile integration, and scaled-up manufacturing we discuss current limitations and present an outlook on how to address the future development of this field. The critical analysis of key challenges and existing opportunities in fibre electronics aims to define a roadmap for future applications in this area.

6.
Biomed Eng Online ; 20(1): 68, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247646

ABSTRACT

BACKGROUND: Continuous long-term electrocardiography monitoring has been increasingly recognized for early diagnosis and management of different types of cardiovascular diseases. To find an alternative to Ag/AgCl gel electrodes that are improper for this application scenario, many efforts have been undertaken to develop novel flexible dry textile electrodes integrated into the everyday garments. With significant progresses made to address the potential issues (e.g., low signal-to-noise ratio, high skin-electrode impedance, motion artifact, and low durability), the lack of standard evaluation procedure hinders the further development of dry electrodes (mainly the design and optimization). RESULTS: A standard testing procedure and framework for skin-electrode impedance measurement is demonstrated for the development of novel dry textile electrodes. Different representative electrode materials have been screen-printed on textile substrates. To verify the performance of dry textile electrodes, impedance measurements are conducted on an agar skin model using a universal setup with consistent frequency and pressure. In addition, they are demonstrated for ECG signals acquisition, in comparison to those obtained using conventional gel electrodes. CONCLUSIONS: Dry textile electrodes demonstrated similar impedance when in raised or flat structures. The tested pressure variations had an insignificant impact on electrode impedance. Looking at the effect of impedance on ECG signals, a noticeable effect on ECG signal performance metrics was not observed. Therefore, it is suggested that impedance alone is possibly not the primary indicator of signal quality. As well, the developed methods can also serve as useful guidelines for future textile dry-electrode design and testing for practical ECG monitoring applications.


Subject(s)
Electrocardiography , Textiles , Artifacts , Electric Impedance , Electrodes
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4563-4566, 2020 07.
Article in English | MEDLINE | ID: mdl-33019009

ABSTRACT

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.


Subject(s)
Wearable Electronic Devices , Artifacts , Humans , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Textiles
8.
Biomed Eng Online ; 19(1): 48, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546233

ABSTRACT

BACKGROUND: The development of wearable health monitoring systems is garnering tremendous interest in research, technology and commercial applications. Their ability of providing unique capabilities in continuous, real-time, and non-invasive tracking of the physiological markers of users can provide insights into the performance and health of individuals. Electrocardiogram (ECG) signals are of particular interest, as cardiovascular disease is the leading cause of death globally. Monitoring heart health and its conditions such as ventricular disturbances and arrhythmias can be achieved through evaluating various features of ECG such as R-peaks, QRS complex, T-wave, and P-wave. Despite recent advances in biosensors for wearable applications, most of the currently available solutions rely solely on a single system attached to the body, limiting the ability to obtain reliable and multi-location biosignals. However, in engineering systems, sensor fusion, which is the optimal integration and processing of data from multiple sensors, has been a common theme and should be considered for wearables. In recent years, due to an increase in the availability and variety of different types of sensors, the possibility of achieving sensor fusion in wearable systems has become more attainable. Sensor fusion in multi-sensing systems results in significant enhancements of information inferences compared to those from systems with a sole sensor. One step towards the development of sensor fusion for wearable health monitoring systems is the accessibility to multiple reliable electrophysiological signals, which can be recorded continuously. RESULTS: In this paper, we develop a textile-based multichannel ECG band that has the ability to measure ECG from multiple locations on the waist. As a proof of concept, we demonstrate that ECG signals can be reliably obtained from different locations on the waist where the shape of the QRS complex is nearly comparable with recordings from the chest using traditional gel electrodes. In addition, we develop a probabilistic approach-based on prediction and update strategies-to detect R-peaks from noisy textile data in different statuses, including sitting, standing, and jogging. In this approach, an optimal search method is utilized to detect R-peaks based on the history of the intervals between previously detected R-peaks. We show that the performance of our probabilistic approach in R-peak detection is significantly better than that based on Pan-Tompkins and optimal-threshold methods. CONCLUSION: A textile-based multichannel ECG band was developed to track the heart rate changes from multiple locations on the waist. We demonstrated that (i) the ECG signal can be detected from different locations on the waist, and (ii) the accuracy of the detected R-peaks from textile sensors was improved by using our proposed probabilistic approach. Despite the limitations of the textile sensors that might compromise the quality of ECG signals, we anticipate that the textile-based multichannel ECG band can be considered as an effective wearable system to facilitate the development of sensor fusion methodology for pervasive and non-invasive health monitoring through continuous tracking of heart rate variability (HRV) from the waist. In addition, from the commercialization point of view, we anticipate that the developed band has the potential to be integrated into garments such as underwear, bras or pants so that individuals can use it on a daily basis.


Subject(s)
Electrocardiography/instrumentation , Textiles , Torso , Wearable Electronic Devices , Algorithms , Artifacts , Humans , Movement , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...