ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. While research on COVID-19 has mainly focused on its epidemiology, pathogenesis, and treatment, studies on the naso-oropharyngeal microbiota have emerged in the last few years as an overlooked area of research. Here, we analyzed the bacterial community composition of the naso-oropharynx in 50 suspected SARS-CoV-2 cases (43 detected, 7 not detected) from Veraguas province (Panama) distributed across five age categories. Statistical analysis revealed no significant differences (p < 0.05) in bacterial alpha and beta diversities between the groups categorized by SARS-CoV-2 test results, age, or patient status. The genera Corynebacterium, Staphylococcus, Prevotella, Streptococcus, and Tepidiphilus were the most abundant in both detected and not-detected SARS-CoV-2 group. The linear discriminant analysis effect size (LEfSe) for biomarker exploration indicated that Veillonella and Prevotella were enriched in detected and hospitalized patients with SARS-CoV-2 relative to non-detected patients, while Thermoanaerobacterium and Haemophilus were enriched in non-detected patients with SARS-CoV-2. The results also indicated that the genus Corynebacterium was found to decrease in patients with detected SARS-CoV-2 relative to those with non-detected SARS-CoV-2. Understanding the naso-oropharyngeal microbiota provides insights into the diversity, composition, and resilience of the microbial community in patients with SARS-CoV-2.
ABSTRACT
Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has reached 28 million cases worldwide in 1 year. The serological detection of antibodies against the virus will play a pivotal role in complementing molecular tests to improve diagnostic accuracy, contact tracing, vaccine efficacy testing, and seroprevalence surveillance. Here, we aimed first to evaluate a lateral flow assay's ability to identify specific IgM and IgG antibodies against SARS-CoV-2 and second, to report the seroprevalence estimates of these antibodies among health care workers and healthy volunteer blood donors in Panama. We recruited study participants between April 30th and July 7th, 2020. For the test validation and performance evaluation, we analyzed serum samples from participants with clinical symptoms and confirmed positive RT-PCR for SARS-CoV-2, and a set of pre-pandemic serum samples. We used two by two table analysis to determine the test positive and negative percentage agreement as well as the Kappa agreement value with a 95% confidence interval. Then, we used the lateral flow assay to determine seroprevalence among serum samples from COVID-19 patients, potentially exposed health care workers, and healthy volunteer donors. Our results show this assay reached a positive percent agreement of 97.2% (95% CI 84.2-100.0%) for detecting both IgM and IgG. The assay showed a Kappa of 0.898 (95%CI 0.811-0.985) and 0.918 (95% CI 0.839-0.997) for IgM and IgG, respectively. The evaluation of serum samples from hospitalized COVID-19 patients indicates a correlation between test sensitivity and the number of days since symptom onset; the highest positive percent agreement [87% (95% CI 67.0-96.3%)] was observed at ≥15 days post-symptom onset (PSO). We found an overall antibody seroprevalence of 11.6% (95% CI 8.5-15.8%) among both health care workers and healthy blood donors. Our findings suggest this lateral flow assay could contribute significantly to implementing seroprevalence testing in locations with active community transmission of SARS-CoV-2.
ABSTRACT
The first patient infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Panama was reported on March 9, 2020. Here, we describe the first case of recovery from coronavirus disease 2019 (COVID-19) in the country. The patient was a 49-year-old male high school teacher, who did not show any primary symptoms of COVID-19 described by health authorities as the signs for medical attention. Nonetheless, he became severely ill over the course of 2 weeks and almost lost the battle against COVID-19. The identification of the first cluster of SARS-CoV-2 community transmission in the secondary school where the patient of this case report taught, led to the closure of the school and, a day after, the shutdown of the national education system, which may have prevented the spread and slowed the transmission rate of COVID-19 during the early stages of invasion. This case report highlights the need to increase awareness among healthcare professionals in Latin America to consider symptoms such as anosmia and dysgeusia as the sentinel signs of COVID-19 infection in order to prevent deaths, especially in high-risk patients.
Subject(s)
COVID-19 , Dysgeusia , Humans , Male , Middle Aged , Panama , SARS-CoV-2 , SchoolsABSTRACT
The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.
ABSTRACT
[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
Subject(s)
Coronavirus Infections , Virus Diseases , Pandemics , Severe acute respiratory syndrome-related coronavirus , Research , Americas , COVID-19 , Coronavirus Infections , Virus Diseases , Pandemics , Severe acute respiratory syndrome-related coronavirus , Research , AmericasABSTRACT
We tested 700 serum samples collected throughout Panama from 2015 to 2016 for detecting antibodies and RNA of arboviruses. In convalescent specimens, microsphere immunoassay detected an antibody prevalence of 59.3% for dengue virus (DENV) and 30.3% for Zika virus (ZIKV), which included samples that were collected before the Panamanian surveillance system reported the first case of Zika in the country. For acute sera, the most common arbovirus was DENV with 18 positive samples (6%), followed by four (1.3%) of ZIKV and one (0.6%) of chikungunya virus (CHIKV). Our results indicate a change in the chronology of when ZIKV was first detected in Panama and stress the importance of integrating various approaches to enable improved surveillance of both endemic and emerging arboviruses.
Subject(s)
Arboviruses , Population Surveillance/methods , Zika Virus Infection/diagnosis , Zika Virus , Antibodies, Viral/blood , Chikungunya virus , Dengue Virus , Fluorescent Antibody Technique , Humans , Panama/epidemiology , Prevalence , Real-Time Polymerase Chain Reaction , Zika Virus Infection/epidemiologyABSTRACT
ABSTRACT The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.(AU)
RESUMEN La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.(AU)
Subject(s)
Humans , Socioeconomic Factors , Disease Outbreaks , Coronavirus Infections/epidemiology , Pandemics/prevention & control , Panama/epidemiology , Latin America/epidemiologyABSTRACT
Long term surveillance of vectors and arboviruses is an integral aspect of disease prevention and control systems in countries affected by increasing risk. Yet, little effort has been made to adjust space-time risk estimation by integrating disease case counts with vector surveillance data, which may result in inaccurate risk projection when several vector species are present, and when little is known about their likely role in local transmission. Here, we integrate 13 years of dengue case surveillance and associated Aedes occurrence data across 462 localities in 63 districts to estimate the risk of infection in the Republic of Panama. Our exploratory space-time modelling approach detected the presence of five clusters, which varied by duration, relative risk, and spatial extent after incorporating vector species as covariates. The Ae. aegypti model contained the highest number of districts with more dengue cases than would be expected given baseline population levels, followed by the model accounting for both Ae. aegypti and Ae. albopictus. This implies that arbovirus case surveillance coupled with entomological surveillance can affect cluster detection and risk estimation, potentially improving efforts to understand outbreak dynamics at national scales.
Subject(s)
Aedes/physiology , Dengue Virus/physiology , Dengue/epidemiology , Mosquito Vectors/physiology , Aedes/classification , Aedes/virology , Animals , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Environmental Monitoring , Epidemiological Monitoring , Humans , Mosquito Vectors/classification , Mosquito Vectors/virology , Panama/epidemiologyABSTRACT
Despite an increase in dengue outbreaks and the arrival of chikungunya and Zika disease in Panama, studies on the demographic history of the invasive Aedes mosquitoes that are the principle vectors of these diseases are still lacking in this region. Here, we assess the genetic diversity of these mosquitoes in order to decipher their invasion histories into the Isthmus of Panama. DNA sequences from the mitochondrial cytochrome C oxidase I gene obtained from 30 localities in 10 provinces confirmed the presence of more than one mitochondrial haplogroup (i.e., maternal lineage) in each species. The invasion of Aedes albopictus was likely from temperate European countries, as the most frequent and widespread haplogroup in Panama harbored variants that are uncommon elsewhere in the Americas. Two infrequent and geographically restricted Ae. albopictus haplotypes appear to have subsequently invaded Panama from neighboring Costa Rica and the USA, respectively. In addition, we recovered two deeply divergent mitochondrial clades in Panamanian Aedes aegypti. The geographic origins of these clades is unknown, given that divergence in the mitochondrial genome is probably due to ancient population processes within the native range of Ae. aegypti, rather than due to its global expansion out of Africa. However, Panamanian Ae. aegypti mitochondrial sequences within the first clade were closely related to others from Colombia, Bolivia, Brazil, Mexico and the USA, suggesting two separate invasions from Western Hemisphere source populations. The pattern of increased genetic diversity in Aedes mosquitoes in Panama is likely facilitated by the numerous land and water inter-connections across the country, which allows them to enter via sea- and land-transportation from Europe, North, Central and South America. Our results here should be considered in disease mitigation programs if emergent arboviruses are to be effectively diminished in Panama through vector suppression.