Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(1): 394-410, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38073471

ABSTRACT

This study aimed to investigate the effects of nanoparticles on macrophage polarization and their subsequent influence on post-tumorigenic behavior. Initially, seven different nanoparticles were applied to macrophages, and Zn-Ni-FeO (100 nm) and palladium nanoparticles (PdNPs, ∼25 nm) were found to induce M1-polarization in macrophages. A co-culture experiment was then conducted to examine the effects of macrophages on MCF-7 breast cancer micro-tissues. The M2-macrophages promoted tumor proliferation, while M1- and PdNPs-induced macrophages showed anti-tumor effects by suppressing cell proliferation. To reveal the mechanisms of effect, exosomes isolated from M1 (M1-Exo), M0 (M0-Exo), M2 (M2-Exo), and PdNPs-induced (PdNPs-Exo) macrophages were applied to the heterotypic tumor micro-tissues including MCF-7, human umbilical vein endothelial cells (HUVECs), and primary human dermal fibroblasts (phDFs). M2-Exo was seen to promote the migration of cancer cells and induce epithelial-mesenchymal transition (EMT), while M1-Exo suppressed these behaviors. PdNPs-Exo was effective in suppressing the aggressive nature of breast cancer cells similar to M1-Exo, moreover, the efficacy of 5-fluorouracil (5-FU) was increased in combination with PdNPs-Exo in both MCF-7 and heterotypic micro-tissues. In conclusion, PdNPs-Exo has potential anti-tumor effects, can be used as a combination therapy to enhance the efficacy of anti-cancer drugs, as well as innovative implants for breast cancer treatment.


Subject(s)
Breast Neoplasms , Exosomes , Metal Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Endothelial Cells/pathology , Palladium/pharmacology , Macrophages/pathology
2.
Adv Healthc Mater ; 12(20): e2203044, 2023 08.
Article in English | MEDLINE | ID: mdl-37014809

ABSTRACT

3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicine.


Subject(s)
Bioprinting , Tissue Engineering , Printing, Three-Dimensional , Extracellular Matrix/chemistry , Regenerative Medicine , Hydrogels/chemistry , Tissue Scaffolds/chemistry
3.
MethodsX ; 10: 102094, 2023.
Article in English | MEDLINE | ID: mdl-36926269

ABSTRACT

Decellularization is one of a promising technique in the field of biomaterials based on the idea of using an acellular construct, here the organ / tissue itself, as a biocompatible and biological construct. In the decellularization process, the main objective is to preserve the structural and functional properties while removing living cells. In the current paper, we describe an electrochemical method for soft tissue decellularization at a specific voltages and time intervals, as well as further DNA, GAG, protein determinations, and histological examinations for the determination of decellularization efficacy. The approach proposed here, is:•Successful decellularization can be achieved by exposing the tissues to fewer chemicals than the traditional methods.•A facile and fast decellularization process long less than a day•An easy decellularization technique that may be applied to soft tissues.

4.
Microsc Microanal ; : 1-5, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36205173

ABSTRACT

Diabetes mellitus is a serious disease worldwide and causes other associated diseases. In this study, we observed the effect of streptozotocin (STZ)-induced diabetes and benfluorex treatment on muscular capillary ultrastructure. Adult male rats were used as the test subjects and each individual was intraperitoneally injected with one dose of STZ (45 mg/kg) to induce diabetes. Doses (50 mg/kg) of benfluorex were given to the subjects with tap water by intragastric gavage application once daily for 21 days. At the end of day 21, muscle tissues were obtained from animals and examined under transmission electron microscopy. From the data obtained with the electron microscope, it was observed that the control group had typical continuous capillary vascular structures in their muscles, while STZ caused disruptive disorder of the muscle cells in the capillary wall of the STZ-diabetic group. Additionally, the thickening of the basement membrane around endothelial cells, loss of mitochondrial crista in the muscle cells, enlarged endothelial cells, and narrowed vessel lumen were observed in the muscle tissue. The findings of our study revealed that STZ-induced diabetes disrupted the vascular structure, while benfluorex partially improved it.

SELECTION OF CITATIONS
SEARCH DETAIL
...