Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Chem ; 47(2): 399-408, 2023.
Article in English | MEDLINE | ID: mdl-37528934

ABSTRACT

Nanostructured semiconductor materials are considered potential candidates for the degradation of textile wastewater via the photocatalytic process. This study aims to produce hexagonal gallium nitride (GaN) nanoplates and zinc oxide (ZnO) nanoparticles in a deionized water environment utilizing a one-step arc discharge process. Detailed characterization of samples has been completed via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV visible spectroscopy methods. The hybrid nanostructure morphologies consist of nanoplates and nanorods of different sizes. The photoperformance of GaN/ZnO hybrid nanostructures was assessed via the malachite green (MG) dye degradation under UV exposure. Under UV exposure, the degradation yield reached 98% in 60 min. Compared to individual ZnO and GaN nanoparticles, the photocatalytic reaction rate of the GaN/ZnO photocatalyst is 2.2 and 3.6 times faster, respectively. Besides, the GaN/ZnO hybrid nanostructures show excellent photocatalytic stability. The energy consumption of the photocatalytic degradation in the presence of GaN/ZnO hybrid nanostructures was 1.688 kWhL-1. These results demonstrate that the GaN/ZnO hybrid nanostructures with improved photocatalytic activity are a reasonable option for the decomposition of textile wastewater under UV light exposure.

2.
Materials (Basel) ; 15(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057170

ABSTRACT

Aerospace-grade composite parts can be manufactured using Vacuum Bag Only prepregs through an accurate process design. Quality in the desired part can be realized by following process modeling, process optimization, and validation, which strongly depend on a primary and systematic material characterization methodology of the prepreg system and material constitutive behavior. The present study introduces a systematic characterization approach of a Vacuum Bag Only prepreg by covering the relevant material properties in an integrated manner with the process mechanisms of fluid flow, consolidation, and heat transfer. The characterization recipe is practiced under the categories of (i) resin system, (ii) fiber architecture, and (iii) thermal behavior. First, empirical models are successively developed for the cure-kinetics, glass transition temperature, and viscosity for the resin system. Then, the fiber architecture of the uncured prepreg system is identified with X-ray tomography to obtain the air permeability. Finally, the thermal characteristics of the prepreg and its constituents are experimentally characterized by adopting a novel specimen preparation technique for the specific heat capacity and thermal conductivity. Thus, this systematic approach is designed to provide the material data to process modeling with the motivation of a robust and integrated Vacuum Bag Only process design.

3.
Environ Sci Pollut Res Int ; 28(6): 6700-6718, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33006103

ABSTRACT

The textile processing industry utilizes enormous amounts of water. After the dying process, the wastewater discharged to the environment contains carcinogens, non-biodegradable, toxic, and colored organic materials. This study aimed to develop a nanocomposite material with improved photocatalytic activity to degrade textile dyes and without a need for a post-separation process after the use. For this, nickel oxide nanoparticles (NiO NPs) were synthesized by a simple method in aqueous media. Then, NiO-doped polyaniline (PANI/NiO) with efficient absorption in the visible region (optical band gap of 2.08 eV) synthesized on a stainless steel substrate with electropolymerization of aniline in the aqueous media. The photocatalytic activity of PANI/NiO film was also investigated by the degradation of model dyes. Under UV and visible light irradiation, the PANI/NiO film degraded methylene blue and rhodamine B dyes entirely in 30 min. Moreover, the PANI/NiO film was also utilized to degrade real textile wastewater (RTW) without applying any pre-process; it was entirely decomposed by the nanocomposite film in only 45 min under UV light irradiation. The photocatalytic reaction rate of the pure PANI film is increased as 2.5 and 1.5 times with the addition of NiO NPs under UV and visible light irradiations for degradation RTW, respectively. The photocatalytic efficiency was attributed to reduced electron-hole pair recombination on the photocatalyst surface. Furthermore, the photocatalytic stability is discussed based on re-use experiments. The photocatalytic performance remains nearly unchanged, and the degradation of dyes is kept 94% after five cycles.


Subject(s)
Coloring Agents , Nanocomposites , Aniline Compounds , Catalysis , Light , Textiles , Ultraviolet Rays , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...