Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 195: 106853, 2023 09.
Article in English | MEDLINE | ID: mdl-37473876

ABSTRACT

Organ-on-chip (OoC) technology has led to in vitro models with many new possibilities compared to conventional in vitro and in vivo models. In this review, the potential of OoC models to improve the prediction of human oral bioavailability and intrinsic clearance is discussed, with a focus on the functionality of the models and the application in current drug development practice. Multi-OoC models demonstrating the application for pharmacokinetic (PK) studies are summarized and existing challenges are identified. Physiological parameters for a minimal viable platform of a multi-OoC model to study PK are provided, together with PK specific read-outs and recommendations for relevant reference compounds to validate the model. Finally, the translation to in vivo PK profiles is discussed, which will be required to routinely apply OoC models during drug development.


Subject(s)
Drug Development , Models, Biological , Humans , Biological Availability , Microphysiological Systems
2.
J Adv Res ; 47: 105-121, 2023 05.
Article in English | MEDLINE | ID: mdl-35964874

ABSTRACT

INTRODUCTION: The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. OBJECTIVES: This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. METHODS: We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device's performance was validated on 12 patients with breast cancer (BC) in different states. RESULTS: The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. CONCLUSION: The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Male , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Microfluidics/methods , Cell Separation/methods , Cell Line, Tumor
3.
Lab Chip ; 22(9): 1650-1679, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35403636

ABSTRACT

Cilia are microscopic hair-like external cell organelles that are ubiquitously present in nature, also within the human body. They fulfill crucial biological functions: motile cilia provide transportation of fluids and cells, and immotile cilia sense shear stress and concentrations of chemical species. Inspired by nature, scientists have developed artificial cilia mimicking the functions of biological cilia, aiming at application in microfluidic devices like lab-on-chip or organ-on-chip. By actuating the artificial cilia, for example by a magnetic field, an electric field, or pneumatics, microfluidic flow can be generated and particles can be transported. Other functions that have been explored are anti-biofouling and flow sensing. We provide a critical review of the progress in artificial cilia research and development as well as an evaluation of its future potential. We cover all aspects from fabrication approaches, actuation principles, artificial cilia functions - flow generation, particle transport and flow sensing - to applications. In addition to in-depth analyses of the current state of knowledge, we provide classifications of the different approaches and quantitative comparisons of the results obtained. We conclude that artificial cilia research is very much alive, with some concepts close to industrial implementation, and other developments just starting to open novel scientific opportunities.


Subject(s)
Biofouling , Cilia , Humans , Lab-On-A-Chip Devices , Magnetic Fields , Microfluidics/methods
4.
Lab Chip ; 22(2): 326-342, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34877953

ABSTRACT

The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC-dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.


Subject(s)
Intestinal Absorption , Intestines , Animals , Cell Line , Humans , Intestinal Mucosa/metabolism , Microfluidics , Permeability , Swine
5.
Trends Biotechnol ; 39(8): 811-823, 2021 08.
Article in English | MEDLINE | ID: mdl-33419585

ABSTRACT

Chronic kidney disease (CKD) typically appears alongside other comorbidities, highlighting an underlying complex pathophysiology that is thought to be vastly modulated by the bidirectional gut-kidney crosstalk. By combining advances in tissue engineering, biofabrication, microfluidics, and biosensors, microphysiological systems (MPSs) have emerged as promising approaches for emulating the in vitro interconnection of multiple organs, while addressing the limitations of animal models. Mimicking the (patho)physiological states of the gut-kidney axis in vitro requires an MPS that can simulate not only this direct bidirectional crosstalk but also the contributions of other physiological participants such as the liver and the immune system. We discuss recent developments in the field that could potentially lead to in vitro modeling of the gut-kidney axis in CKD.


Subject(s)
Intestines , Kidney , Models, Biological , Animals , Humans , Immune System/physiology , Intestines/physiology , Kidney/physiology , Liver/physiology , Microfluidics , Tissue Engineering
6.
Article in English | MEDLINE | ID: mdl-32793567

ABSTRACT

Microphysiological systems have potential as test systems in studying the intestinal barrier, in which shear stress is critical for the differentiation of Caco-2 cells into enterocytes. The most commonly used in vitro gut model for intestinal barrier studies is based on trans-well cultures. Albeit useful, these culture systems lack physiological shear stress which is believed to be critical for the differentiation of Caco-2 cells into enterocytes and to form tight monolayers. Conversely, organ-on-chip models have presented themselves as a promising alternative since it provides cells with the required shear stress. To this end, a novel biocompatible 3D-printed microfluidic device was developed. In this device, Caco-2 cells were seeded under physiologically-relevant unidirectional shear stress and compared to cells cultured under gravity-driven flow. Using numerical studies, the flow rate that corresponds to the required shear stress was calculated. Experimental tests were conducted to verify the effect of this on cell differentiation. The experiments clearly showed an enhancement of cell differentiation potential in a unidirectional physiologically-relevant pump-driven flow system (PDFS) as opposed to the simpler bidirectional gravity-driven flow system (GDFS). Additionally, computational modeling of an adapted design confirmed its ability to supply all cells with a more homogeneous shear stress, potentially further enhancing their differentiation. The shear stress in the adapted design can be well-approximated with analytic methods, thus allowing for efficient predictions for all parameter values in the system. The developed novel microfluidic device led to the formation of a tighter monolayer and enhanced functional properties of the differentiated Caco-2 cells, which presents a promising tool for preclinical in vitro testing of drugs in an animal-free platform.

7.
Dis Model Mech ; 11(3)2018 03 16.
Article in English | MEDLINE | ID: mdl-29555848

ABSTRACT

Most cancer deaths are not caused by the primary tumor, but by secondary tumors formed through metastasis, a complex and poorly understood process. Cues from the tumor microenvironment, such as the biochemical composition, cellular population, extracellular matrix, and tissue (fluid) mechanics, have been indicated to play a pivotal role in the onset of metastasis. Dissecting the role of these cues from the tumor microenvironment in a controlled manner is challenging, but essential to understanding metastasis. Recently, cancer-on-a-chip models have emerged as a tool to study the tumor microenvironment and its role in metastasis. These models are based on microfluidic chips and contain small chambers for cell culture, enabling control over local gradients, fluid flow, tissue mechanics, and composition of the local environment. Here, we review the recent contributions of cancer-on-a-chip models to our understanding of the role of the tumor microenvironment in the onset of metastasis, and provide an outlook for future applications of this emerging technology.


Subject(s)
Microfluidics/methods , Neoplasms/pathology , Tumor Microenvironment , Animals , Extracellular Matrix/metabolism , Humans , Models, Biological , Neoplasm Metastasis , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...