Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049143

ABSTRACT

In this paper, indium tin oxide/silver indium/indium tin oxide (ITO/AgIn/ITO) composite films were deposited on glass substrates by magnetron sputtering. The effects of the sputtering temperature on the optical and electrical properties of the composite films were systematically investigated. The ITO/AgIn/ITO composite films deposited at sputtering temperatures of 25 °C and 100 °C demonstrated a high reflectivity of 95.3% at 550 nm and a resistivity of about 6.8-7.3 µΩ·cm. As the sputtering temperature increased, the reflectivity decreased and the resistivity increased slightly. The close connection between microstructure and surface morphology and the optical and electrical properties of the composite films was further illustrated by scanning electron microscopy imaging and atomic force microscopy imaging. It is shown that the ITO/AgIn/ITO thin films have a promising application for high-reflectivity anodes.

2.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770149

ABSTRACT

Giant magnetostriction could be achieved in MnCoSi-based alloys due to the magneto-elastic coupling accompanied by the meta-magnetic transition. In the present work, the effects of hydrostatic pressure on magnetostrictive behavior in MnCo0.92Ni0.08Si alloy have been investigated. The saturation magnetostriction (at 30,000 Oe) could be enhanced from 577 ppm to 5034 ppm by the hydrostatic pressure of 3.2 kbar at 100 K. Moreover, under a magnetic field of 20,000 Oe, the reversible magnetostriction was improved from 20 ppm to 2112 ppm when a hydrostatic pressure of 6.4 kbar was applied at 70 K. In all, it has been found that the magnetostrictive effect of the MnCo0.92Ni0.08Si compound is strongly sensitive to external hydrostatic pressure. This work proves that the MnCoSi-based alloys as a potential cryogenic magnetostrictive material can be modified through applied hydrostatic pressure.

3.
Materials (Basel) ; 15(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683333

ABSTRACT

Large magnetic field-induced strains can be achieved in modulated martensite for Ni-Mn-In alloys; however, the metastability of the modulated martensite imposes serious constraints on the ability of these alloys to serve as promising sensor and actuator materials. The phase stability, magnetic properties, and electronic structure of the modulated martensite in the Ni2Mn1.5In0.5 alloy are systematically investigated. Results show that the 6M and 5M martensites are metastable and will eventually transform to the NM martensite with the lowest total energy in the Ni2Mn1.5In0.5 alloy. The physical properties of the incommensurate 7M modulated martensite (7M-IC) and nanotwinned 7M martensite (7M-(52¯)2) are also calculated. The austenite (A) and 7M-(52¯)2 phases are ferromagnetic (FM), whereas the 5M, 6M, and NM martensites are ferrimagnetic (FIM), and the FM coexists with the FIM state in the 7M-IC martensite. The calculated electronic structure demonstrates that the splitting of Jahn-Teller effect and the strong Ni-Mn bonding interaction lead to the enhancement of structural stability.

4.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269146

ABSTRACT

Epitaxial Ni-Mn-Ga thin films have been extensively investigated, due to their potential applications in magnetic micro-electro-mechanical systems. It has been proposed that the martensitic phase in the <1 1 0>A-oriented film is much more stable than that in the <1 0 0>A-oriented film. Nevertheless, the magnetic properties, microstructural features, and crystal structures of martensite in such films have not been fully revealed. In this work, the <1 1 0>A-oriented Ni51.0Mn27.5Ga21.5 films with different thicknesses were prepared by epitaxially growing on Al2O3(1 1 2¯ 0) substrate by magnetron sputtering. The characterization by X-ray diffraction technique and transmission electron microscopy revealed that all the Ni51.0Mn27.5Ga21.5 films are of 7M martensite at the ambient temperature, with their Type-I and Type-II twinning interfaces nearly parallel to the substrate surface.

5.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329524

ABSTRACT

Large magnetostrain can be demonstrated in Ni-Mn-X (X = In, Sn, Sb) meta-magnetic shape memory alloys by resuming the predeformed martensite through magnetic-field-induced reverse martensitic transformation. However, owing to the constraint from the self-accommodated microstructure and randomly distributed crystallographic orientation, spontaneous magnetostrain without predeformation in polycrystalline alloys remains low. Here, by combining microstructure texturing and superelastic training, enhanced spontaneous magnetostrain was achieved in a directionally solidified Ni44.5Co4.9Mn37.5In13.1 alloy with strong <0 0 1>A preferred orientation. After superelastic training through cyclic compressive loading/unloading on the directionally solidified alloy, a large spontaneous magnetostrain of ~0.65% was obtained by applying a magnetic field of 5 T, showing great improvement when compared to that of the untrained situation, i.e., ~0.45%. Such enhanced magnetoresponse is attributed to the internal stress generated through superelastic training, which affects the variant distribution and the resultant output strain in association with the martensitic transformation.

6.
Materials (Basel) ; 14(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576457

ABSTRACT

First-order isostructural magnetoelastic transition with large magnetization difference and controllable thermal hysteresis are highly desirable in the development of high-performance magnetocaloric materials used for energy-efficient and environmental-friendly magnetic refrigeration. Here, we demonstrate large magnetocaloric effect covering the temperature range from 325 K to 245 K in Laves phase Hf1-xTaxFe2 (x = 0.13, 0.14, 0.15, 0.16) alloys undergoing the magnetoelastic transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state on decreasing the temperature. It is shown that with the increase of Ta content, the nature of AFM to FM transition is gradually changed from second-order to first-order. Based on the direct measurements, large reversible adiabatic temperature change (ΔTad) values of 2.7 K and 3.4 K have been achieved under a low magnetic field change of 1.5 T in the Hf0.85Ta0.15Fe2 and Hf0.84Ta0.16Fe2 alloys with the first-order magnetoelastic transition, respectively. Such remarkable magnetocaloric response is attributed to the rather low thermal hysteresis upon the transition as these two alloys are close to intermediate composition point of second-order transition converting to first-order transition.

7.
IUCrJ ; 6(Pt 5): 784-785, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576210

ABSTRACT

Oligocrystalline-structured Ni43.7Cu1.5Co5.1Mn36.7In13 microwires with bamboo-like grains were successfully prepared by Chen et al. [(2019), IUCrJ, 6, 843-853]. Pronounced mechanical and magnetic properties were shown in the tensile superelasticity and the magnetocaloric effect, respectively.

8.
IUCrJ ; 6(Pt 5): 909-920, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576223

ABSTRACT

For Heusler-type Ni-Mn-Ga ferromagnetic shape-memory alloys, the configuration of the martensite variants is a decisive factor in achieving a large magnetic shape-memory effect through field-induced variant reorientation. Based upon the spatially resolved electron backscatter diffraction technique, the microstructural evolution associated with the martensitic transformation from austenite to seven-layered modulated (7M) martensite was investigated on a polycrystalline Ni53Mn22Ga25 alloy. It was clearly shown that grain interior nucleation led to the formation of diamond-shaped 7M martensite within the parent austenite matrix. This diamond microstructure underwent further growth through an isotropic expansion with the coordinated outward movement of four side habit planes, followed by an anisotropic elongation with the forward extension of a type-I twin pair. A two-step growth model is proposed to describe the specific morphology and crystallography of 7M martensite. In addition, the habit planes were revealed to possess a stepped structure, with the {1 0 1}A plane as the terrace and the {0 1 0}A plane as the step. The characteristic combination of martensite variants and the underlying mechanism of self-accommodation in the martensitic transformation have been analysed in terms of the minimum total transformation strain, where the deformation gradient matrix was constructed according to the experimentally determined orientation relationship between the two phases. The present results may deepen the understanding of special martensite microstructures during the martensitic transformation in ferromagnetic shape-memory alloys.

9.
IUCrJ ; 6(Pt 3): 366-372, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31098018

ABSTRACT

Stress-induced martensitic detwinning and martensitic transformation during step-wise compression in an austenite Ni-Mn-Ga matrix with a martensite cluster under uniaxial loading have been investigated by electron backscatter diffraction, focusing on the crystallographic features of microstructure evolution. The results indicate that detwinning occurs on twins with a high Schmid factor for both intra-plate and inter-plate twins in the hierarchical structure, resulting in a nonmodulated (NM) martensite composed only of favourable variants with [001]NM orientation away from the compression axis. Moreover, the stress-induced martensitic transformation occurs at higher stress levels, undergoing a three-stage transformation from austenite to a twin variant pair and finally to a single variant with increasing compressive stress, and theoretical calculation shows that the corresponding crystallographic configuration is accommodated to the compression stress. The present research not only provides a comprehensive understanding of martensitic variant detwinning and martensitic transformation under compression stress, but also offers important guidelines for the mechanical training process of martensite.

10.
IUCrJ ; 5(Pt 1): 54-66, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29354271

ABSTRACT

The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn50Ni42-x Co x Sn8 (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at TC on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at TM. Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔSM of 18.6 J kg-1 K-1 and an effective refrigerant capacity RCeff of up to 178 J kg-1 can be achieved, which are comparable with or even superior to those of Ni-rich Ni-Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn-Ni-Co-Sn ribbons of great interest as potential candidates for magnetic refrigeration.

11.
IUCrJ ; 4(Pt 5): 700-709, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989725

ABSTRACT

The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni50Mn38Sb12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]}A // {2[Formula: see text]}M and 〈0[Formula: see text]1〉A // 〈[Formula: see text]2〉M; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]}A and {0[Formula: see text]}A of austenite. The three {0[Formula: see text]}A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉A axis zone. The {0[Formula: see text]}A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉A axis zones having one {0[Formula: see text]}A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the variants in the compatible plates are compatible and demonstrate an edge-to-edge character. Thus, such plates should nucleate and grow simultaneously. On the other hand, the strains to form the variants in the incompatible plates are incompatible, so they nucleate and grow separately until they meet during the transformation. The results of the present work provide comprehensive information on the martensitic transformation of Ni-Mn-Sb intermetallic compounds and its impact on martensite variant organization.

12.
Materials (Basel) ; 10(5)2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28772826

ABSTRACT

Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

13.
J Appl Crystallogr ; 50(Pt 3): 795-804, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28656040

ABSTRACT

For the ß phase of Ti-5553-type metastable ß-Ti alloys, striations in transmission electron microscopy (TEM) bright- and dark-field images have been frequently observed but their origin has not been sufficiently investigated. In the present work, this phenomenon is studied in depth from the macroscopic scale by neutron diffraction to the atomic scale by high-resolution TEM. The results reveal that the ß phase contains homogeneously distributed modulated structures, intermediate between that of the ß phase (cubic) and that of the α phase or the ω phase (hexagonal), giving rise to the appearance of additional diffraction spots at 1/2, 1/3 and 2/3 ß diffraction positions. The intermediate structure between ß and α is formed by the atomic displacements on each second {110}ß plane in the [Formula: see text] direction, whereas that between ß and ω is formed by atomic displacements on each second and third {112}ß plane in the opposite [Formula: see text] direction. Because of these atomic displacements, the {110}ß and {112}ß planes become faulted, resulting in the streaking of ß diffraction spots and the formation of extinction fringes in TEM bright- and dark-field images, the commonly observed striations. The present work reveals the origin of the striations and the intrinsic correlation with the additional electron reflections of the ß phase.

14.
J Appl Crystallogr ; 43(Pt 6): 1426-1430, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-22477779

ABSTRACT

The fundamental theory of crystal twinning has been long established, leading to a significant advance in understanding the nature of this physical phenomenon. However, there remains a substantial gap between the elaborate theory and the practical determination of twinning elements. This paper proposes a direct and simple method - valid for any crystal structure and based on the minimum shear criterion - to calculate various twinning elements from the experimentally determined twinning plane for Type I twins or the twinning direction for Type II twins. Without additional efforts, it is generally applicable to identify and predict possible twinning modes occurring in a variety of crystalline solids. Therefore, the present method is a promising tool to characterize twinning elements, especially for those materials with complex crystal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...