Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(1): e03251, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32042976

ABSTRACT

Obesity is one of the primary causes of type 2 diabetes mellitus (T2DM). To better understand how obesity impairs glucose-insulin homeostasis, we tracked fasting blood glucose and insulin levels and the key components of glucose-insulin homeostasis for 7 months in high fat diet (HFD; 45% fat) fed mice (n = 8). Every 2 weeks we measured body weight, fasting blood glucose and insulin levels, and estimated 5 key rate constants of glucose-insulin homeostasis using the methods established previously (Heliyon 3: e00310, 2017). Mice gained weight steadily, more than doubling their weights after 7 months (23.6 ± 0.5 to 52.3 ± 1.4 g). Fasting (basal) insulin levels were elevated (221.3 ± 16.7 to 1043.1 ± 90.5 pmol l-1) but fasting blood glucose levels unexpectedly returned to the baseline levels (152.8 ± 7.0 to 152.0 ± 7.2 mg/dl) despite significantly elevated levels (216.8 ± 44.9 mg/dl, average of 3 highest values for 8 mice) during the experimental period. After 7 months of HFD feeding, the rate constants for insulin secretion (k1), insulin-independent glucose uptake (k3), and insulin concentration where liver switches from glucose uptake to release (Ipi) were significantly elevated. Insulin-dependent glucose uptake (k2) and rate constant of liver glucose transfer (k4) were lowered but no statistical significance was reached. The novel and key finding of this study is the wide range of fluctuations of the rate constants during the course of obesity, reflecting the body's compensatory responses against metabolic alterations caused by obesity.

2.
Arch Biochem Biophys ; 596: 126-37, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26970045

ABSTRACT

Peroxynitrite has been implicated in type 2 diabetes and diabetic complications. As a follow-up study to our previous work on SR-135 (Arch Biochem Biophys 577-578: 49-59, 2015), we provide evidence that this series of compounds are effective when administered orally, and their mechanisms of actions extend to the peripheral tissues. A more soluble analogue of SR-135, SR-110 (from a new class of Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes) was orally administered for 2 weeks to B6D2F1 mice fed a high fat-diet (HFD). Mice fed a HFD for 4 months gained significantly higher body weights compared to lean diet-fed mice (52 ± 1.5 g vs 34 ± 1.3 g). SR-110 (10 mg/kg daily) treatment significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control or vehicle (peanut butter) group. SR-110 treatment enhanced insulin signaling in the peripheral organs, liver, heart, and skeletal muscle, and reduced lipid accumulation in the liver. Furthermore, SR-110 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration. These results suggest that a peroxynitrite decomposing catalyst is effective in improving glucose homeostasis and restoring islet morphology and ß-cell insulin content under nutrient overload.


Subject(s)
Dietary Fats/adverse effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Peroxynitrous Acid/metabolism , Porphobilinogen/analogs & derivatives , Signal Transduction/drug effects , Administration, Oral , Animals , Blood Glucose/metabolism , Dietary Fats/pharmacology , Homeostasis/drug effects , Mice , Porphobilinogen/chemistry , Porphobilinogen/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...