Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141873, 2024 May.
Article in English | MEDLINE | ID: mdl-38593958

ABSTRACT

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.


Subject(s)
Environmental Monitoring , Esters , Phthalic Acids , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Esters/analysis , Soil Pollutants/analysis , Brazil , Soil/chemistry
2.
Heliyon ; 9(11): e22338, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045186

ABSTRACT

Polyethylene (PE) microplastics (MPs) are small particles of plastic made from polyethylene, which is a commonly used type of plastic. These microplastics can be found in water sources, such as rivers, lakes, and oceans. They are typically less than 5 mm in size. Chlorella vulgaris (C. vulgaris) is an excellent, simple and inexpensive biocoagulant that can effectively remove a wide range of pollutants through the coagulation and flocculation mechanism. In this study, C. vulgaris algae were used to remove PE MPs. The experiments were designed using the Behnken Box model. The evaluated parameters were the initial PE concentration (100-400 mg/L), the C. vulgaris dose (50-200), and the pH (4-10). The findings showed that increasing the concentration of polyethylene had a positive effect on the efficiency of removal. In addition, the dose of C. vulgaris and pH parameters were inversely and directly related to removal efficiency, respectively. The highest removal efficiency was observed under alkaline conditions. Overall, the maximum PE removal efficiency was 84 % when the concentration of PE was 250 mg/L, the dose of C. vulgaris was 50 mg/L, and the pH was 10. It can be concluded that algae can be used as an environmentally friendly coagulant for effectively removing MPs from aquatic environments.

3.
Sci Rep ; 13(1): 20402, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990113

ABSTRACT

Polystyrene (PS) is a commonly used plastic material in disposable containers. However, it readily breaks down into microplastic particles when exposed to water environments. In this research, oak powder was used as a natural, inexpensive, and eco-friendly coagulant. The present study aims to determine the effectiveness of oak powder in removing PS from aquatic environments. The Box-Behnken model (BBD) was used to determine the optimal conditions for removal. The removal efficiency was evaluated for various parameters including PS concentration (100-900 mg/L), pH (4-10), contact time (10-40 min), and oak dosage (100-400 mg/L). The maximum removal of PS microplastics (89.1%) was achieved by using an oak dose of 250 mg/L, a PS concentration of 900 mg/L, a contact time of 40 min, and a pH of 7. These results suggest that oak powder can effectively remove PS microplastics through surface adsorption and charge neutralization mechanisms, likely due to the presence of tannin compounds. Based on the results obtained, it has been found that the natural coagulant derived from oak has the potential to effectively compete with harmful chemical coagulants in removing microplastics from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...